
The value of $\dfrac{3}{4} + \dfrac{{15}}{{16}} + \dfrac{{63}}{{64}} + ......$ up to n terms is
${\text{A}}{\text{. }}n - \dfrac{{{4^n}}}{3} - \dfrac{1}{3}$
${\text{B}}{\text{. }}n + \dfrac{{{4^{ - n}}}}{3} - \dfrac{1}{3}$
${\text{C}}{\text{. }}n + \dfrac{{{4^n}}}{3} - \dfrac{1}{3}$
${\text{D}}{\text{. }}n - \dfrac{{{4^{ - n}}}}{3} + \dfrac{1}{3}$
Answer
614.4k+ views
Hint: Write the series $\dfrac{3}{4} + \dfrac{{15}}{{16}} + \dfrac{{63}}{{64}} + ......$ as \[\left( {1 - \dfrac{1}{4}} \right) + \left( {1 - \dfrac{1}{{16}}} \right) + \left( {1 - \dfrac{1}{{64}}} \right) + .......\] to n terms, then solve the question.
Complete step-by-step answer:
We have been given in the question, the series $\dfrac{3}{4} + \dfrac{{15}}{{16}} + \dfrac{{63}}{{64}} + ......$ up to n terms.
To find – the sum of the given series.
We can write the given series in the form-
\[\left( {1 - \dfrac{1}{4}} \right) + \left( {1 - \dfrac{1}{{16}}} \right) + \left( {1 - \dfrac{1}{{64}}} \right) + .......\] to n terms.
Solving it further-
\[
\left( {1 - \dfrac{1}{4}} \right) + \left( {1 - \dfrac{1}{{16}}} \right) + \left( {1 - \dfrac{1}{{64}}} \right) + ....... \\
= (1 + 1 + 1 + ... + 1) - \dfrac{1}{4}\left( {1 + \dfrac{1}{4} + \dfrac{1}{{{4^2}}} + .......} \right) \\
= n - \dfrac{1}{4}.\dfrac{{1 - {{\left( {\dfrac{1}{4}} \right)}^n}}}{{1 - \dfrac{1}{4}}} \\
= n - \dfrac{1}{4}.\dfrac{{(1 - {4^{ - n}})}}{{\dfrac{3}{4}}} \\
= n - \dfrac{1}{3}(1 - {4^{ - n}}) \\
= n + \dfrac{{{4^{ - n}}}}{3} - \dfrac{1}{3} \\
\] {Since, the sum \[\left( {1 + \dfrac{1}{4} + \dfrac{1}{{{4^2}}} + .......} \right)\]=\[\dfrac{{1 - {{\left( {\dfrac{1}{4}} \right)}^n}}}{{1 - \dfrac{1}{4}}}\]}
Therefore, the sum of the given series is ${\text{B}}{\text{. }}n + \dfrac{{{4^{ - n}}}}{3} - \dfrac{1}{3}$.
Note: Whenever such types of questions appear, then write down the given series and then convert into a simplified form, as mentioned in the solution i.e., \[\left( {1 - \dfrac{1}{4}} \right) + \left( {1 - \dfrac{1}{{16}}} \right) + \left( {1 - \dfrac{1}{{64}}} \right) + .......\] to n terms. Then, we know, 1+ 1+ 1+ …. to n terms is n and then the series will become \[n - \dfrac{1}{4}.\dfrac{{1 - {{\left( {\dfrac{1}{4}} \right)}^n}}}{{1 - \dfrac{1}{4}}}\], simplify it further to get the sum.
Complete step-by-step answer:
We have been given in the question, the series $\dfrac{3}{4} + \dfrac{{15}}{{16}} + \dfrac{{63}}{{64}} + ......$ up to n terms.
To find – the sum of the given series.
We can write the given series in the form-
\[\left( {1 - \dfrac{1}{4}} \right) + \left( {1 - \dfrac{1}{{16}}} \right) + \left( {1 - \dfrac{1}{{64}}} \right) + .......\] to n terms.
Solving it further-
\[
\left( {1 - \dfrac{1}{4}} \right) + \left( {1 - \dfrac{1}{{16}}} \right) + \left( {1 - \dfrac{1}{{64}}} \right) + ....... \\
= (1 + 1 + 1 + ... + 1) - \dfrac{1}{4}\left( {1 + \dfrac{1}{4} + \dfrac{1}{{{4^2}}} + .......} \right) \\
= n - \dfrac{1}{4}.\dfrac{{1 - {{\left( {\dfrac{1}{4}} \right)}^n}}}{{1 - \dfrac{1}{4}}} \\
= n - \dfrac{1}{4}.\dfrac{{(1 - {4^{ - n}})}}{{\dfrac{3}{4}}} \\
= n - \dfrac{1}{3}(1 - {4^{ - n}}) \\
= n + \dfrac{{{4^{ - n}}}}{3} - \dfrac{1}{3} \\
\] {Since, the sum \[\left( {1 + \dfrac{1}{4} + \dfrac{1}{{{4^2}}} + .......} \right)\]=\[\dfrac{{1 - {{\left( {\dfrac{1}{4}} \right)}^n}}}{{1 - \dfrac{1}{4}}}\]}
Therefore, the sum of the given series is ${\text{B}}{\text{. }}n + \dfrac{{{4^{ - n}}}}{3} - \dfrac{1}{3}$.
Note: Whenever such types of questions appear, then write down the given series and then convert into a simplified form, as mentioned in the solution i.e., \[\left( {1 - \dfrac{1}{4}} \right) + \left( {1 - \dfrac{1}{{16}}} \right) + \left( {1 - \dfrac{1}{{64}}} \right) + .......\] to n terms. Then, we know, 1+ 1+ 1+ …. to n terms is n and then the series will become \[n - \dfrac{1}{4}.\dfrac{{1 - {{\left( {\dfrac{1}{4}} \right)}^n}}}{{1 - \dfrac{1}{4}}}\], simplify it further to get the sum.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

