
The value of $$\dfrac{{1 - \sin A}}{{\cos A}}$$ is equal to
(A) $$\dfrac{{\cos A}}{{1 + \sin A}}$$
(B) $$\dfrac{{\sin A}}{{1 - \cos A}}$$
(C) $$\dfrac{{\tan A}}{{1 + \tan A}}$$
(D) $$\dfrac{{\tan A}}{{1 + \cos A}}$$
Answer
496.8k+ views
Hint: In the given question, we have two simple trigonometric functions, sine and cosine. We do not have direct formulae to apply and simplify. So, we make modifications in the numerator and the denominator by multiplying and dividing a particular term. By doing this, we can simplify it into a form where we can cancel out or group terms so that we can apply formulae easily. Then, we can simplify the terms and use the available formulae to get to the final answer.
Formula used:
$$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$$
$${\sin ^2}A + {\cos ^2}A = 1$$
Complete step by step answer:
Let the consider the given expression,
$$\dfrac{{1 - \sin A}}{{\cos A}}$$
We have $$1 - \sin A$$ in the numerator. In order to use the $$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$$ formula, we need $$1 + \sin A$$. So, we multiply and divide by $$1 + \sin A$$.
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{1 - \sin A}}{{\cos A}} \times \dfrac{{1 + \sin A}}{{1 + \sin A}}$$
Let us now group the numerators and the denominators,
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}}{{\cos A\left( {1 + \sin A} \right)}}$$…… (1)
We can see that the numerator is in the form $$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$$
Where,
$$a = 1$$
$$b = \sin A$$
$$ \Rightarrow \left( {1 - \sin A} \right)\left( {1 + \sin A} \right) = 1 - {\sin ^2}A$$
Substituting in (1), we get
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{1 - {{\sin }^2}A}}{{\cos A\left( {1 + \sin A} \right)}}$$
We know that,
$${\sin ^2}A + {\cos ^2}A = 1$$
$$ \Rightarrow 1 - {\sin ^2}A = {\cos ^2}A$$
Substituting this, we get
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{{{\cos }^2}A}}{{\cos A\left( {1 + \sin A} \right)}}$$
We can cancel out the $$\cos A$$ in the denominator.
Now, we get
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{\cos A}}{{1 + \sin A}}$$
Therefore, the final answer is $$\dfrac{{\cos A}}{{1 + \sin A}}$$. Hence, option (A) is the correct answer.
Note:
The question does not give us an expression where we can apply a formula directly. So, we need to make changes according to the terms present. The denominator cannot be simplified since it's only a trigonometric function. So, we can only change the numerator. Note that the question contains trigonometric functions, but we also use algebraic formulae. So, we need to be thorough with all the formulae.
Formula used:
$$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$$
$${\sin ^2}A + {\cos ^2}A = 1$$
Complete step by step answer:
Let the consider the given expression,
$$\dfrac{{1 - \sin A}}{{\cos A}}$$
We have $$1 - \sin A$$ in the numerator. In order to use the $$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$$ formula, we need $$1 + \sin A$$. So, we multiply and divide by $$1 + \sin A$$.
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{1 - \sin A}}{{\cos A}} \times \dfrac{{1 + \sin A}}{{1 + \sin A}}$$
Let us now group the numerators and the denominators,
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}}{{\cos A\left( {1 + \sin A} \right)}}$$…… (1)
We can see that the numerator is in the form $$\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}$$
Where,
$$a = 1$$
$$b = \sin A$$
$$ \Rightarrow \left( {1 - \sin A} \right)\left( {1 + \sin A} \right) = 1 - {\sin ^2}A$$
Substituting in (1), we get
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{1 - {{\sin }^2}A}}{{\cos A\left( {1 + \sin A} \right)}}$$
We know that,
$${\sin ^2}A + {\cos ^2}A = 1$$
$$ \Rightarrow 1 - {\sin ^2}A = {\cos ^2}A$$
Substituting this, we get
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{{{\cos }^2}A}}{{\cos A\left( {1 + \sin A} \right)}}$$
We can cancel out the $$\cos A$$ in the denominator.
Now, we get
$$ \Rightarrow \dfrac{{1 - \sin A}}{{\cos A}} = \dfrac{{\cos A}}{{1 + \sin A}}$$
Therefore, the final answer is $$\dfrac{{\cos A}}{{1 + \sin A}}$$. Hence, option (A) is the correct answer.
Note:
The question does not give us an expression where we can apply a formula directly. So, we need to make changes according to the terms present. The denominator cannot be simplified since it's only a trigonometric function. So, we can only change the numerator. Note that the question contains trigonometric functions, but we also use algebraic formulae. So, we need to be thorough with all the formulae.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

