
The value of $\csc 15{}^\circ +\sec 15{}^\circ =$
A. $2\sqrt{3}$
B. $\sqrt{6}$
C. $2\sqrt{6}$
D. $\sqrt{6}+\sqrt{2}$
Answer
556.8k+ views
Hint: The angle $15{}^\circ $ can be written as $15{}^\circ =45{}^\circ -30{}^\circ $ .
We need to know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\frac{1}{\cos A}$ .
Some useful Trigonometric Identities:
$\sin (A\pm B)=\sin A\cos B\pm \sin B\cos A$
$\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B$
Complete step-by-step answer:
Let us first calculate the values of $\sin 15{}^\circ $ and $\cos 15{}^\circ $ .
Using the identity $\sin (A-B)=\sin A\cos B-\sin B\cos A$ , we get:
$\sin 15{}^\circ =\sin \left( 45{}^\circ -30{}^\circ \right)=\sin 45{}^\circ \cos 30{}^\circ -\sin 30{}^\circ \cos 45{}^\circ $
Substituting the values of $\sin 45{}^\circ $ , $\cos 30{}^\circ $ , etc.
⇒ $\sin 15{}^\circ =\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)$
⇒ $\sin 15{}^\circ =\dfrac{\sqrt{3}-1}{2\sqrt{2}}$
And, using the identity $\cos (A-B)=\cos A\cos B+\sin A\sin B$ , we get:
$\cos 15{}^\circ =\cos \left( 45{}^\circ -30{}^\circ \right)=\cos 45{}^\circ \cos 30{}^\circ +\sin 45{}^\circ \sin 30{}^\circ $
Substituting the values of $\sin 45{}^\circ $ , $\cos 30{}^\circ $ , etc.
⇒ $\cos 15{}^\circ =\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)$
⇒ $\cos 15{}^\circ =\dfrac{\sqrt{3}+1}{2\sqrt{2}}$
Now, $\csc 15{}^\circ +\sec 15{}^\circ =\dfrac{1}{\sin 15{}^\circ }+\dfrac{1}{\cos 15{}^\circ }$ . Substituting the values of $\sin 15{}^\circ $ and $\cos 15{}^\circ $ from above, we get:
$\csc 15{}^\circ +\sec 15{}^\circ =\dfrac{1}{\left( \dfrac{\sqrt{3}-1}{2\sqrt{2}} \right)}+\dfrac{1}{\left( \dfrac{\sqrt{3}+1}{2\sqrt{2}} \right)}$
= $\dfrac{2\sqrt{2}}{\sqrt{3}-1}+\dfrac{2\sqrt{2}}{\sqrt{3}+1}$
On equating the denominators, we get:
= $\dfrac{2\sqrt{2}\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}-1 \right)\left( \sqrt{3}+1 \right)}+\dfrac{2\sqrt{2}\left( \sqrt{3}-1 \right)}{\left( \sqrt{3}+1 \right)\left( \sqrt{3}-1 \right)}$
On multiplying the terms in the numerator and denominators, we get:
= $\dfrac{2\sqrt{6}+\sqrt{2}}{3+\sqrt{3}-\sqrt{3}-1}+\dfrac{2\sqrt{6}-\sqrt{2}}{3-\sqrt{3}+\sqrt{3}-1}$
= $\dfrac{2\sqrt{6}+\sqrt{2}}{2}+\dfrac{2\sqrt{6}-\sqrt{2}}{2}$
= $\dfrac{4\sqrt{6}}{2}$
= $2\sqrt{6}$ .
Hence, the correct answer option is C. $2\sqrt{6}$ .
Note: (i) The values of trigonometric ratios for the common angles $0{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ $ are calculated by using Pythagoras's theorem and properties of isosceles triangles for $60{}^\circ -60{}^\circ -60{}^\circ $ and $90{}^\circ -45{}^\circ -45{}^\circ $ triangles.
(ii)If we know the values of trigonometric ratios for the common angles $0{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ $ , we can calculate the values of trigonometric ratios for angles which are sum or differences of these, like $15{}^\circ ,75{}^\circ ,105{}^\circ ,120{}^\circ ,135{}^\circ $ .
(iii)We see that $\sin 2A=2\sin A\cos A$ . Now, we can also find the values of $\sin 3A$ by using the fact that $3A = 2A + A$ , and then $\sin 5A$ as $5A = 3A + 2A$ , and so on.
(iv)Since, ${{\sin }^{2}}A+{{\cos }^{2}}A=1$ , we can always calculate $\cos A$ from $\sin A$ , and then the other ratios follow.
We need to know that $\csc A=\dfrac{1}{\sin A}$ and $\sec A=\frac{1}{\cos A}$ .
Some useful Trigonometric Identities:
$\sin (A\pm B)=\sin A\cos B\pm \sin B\cos A$
$\cos (A\pm B)=\cos A\cos B\mp \sin A\sin B$
| Values of Trigonometric Ratios for Common Angles: | |||||
| $0{}^\circ $ | $30{}^\circ $ | $45{}^\circ $ | $60{}^\circ $ | $90{}^\circ $ | |
| sin | 0 | $\dfrac{1}{2}$ | $\dfrac{1}{\sqrt2}$ | $\dfrac{\sqrt3}{2}$ | 1 |
| cos | 1 | $\dfrac{\sqrt3}{2}$ | $\dfrac{1}{\sqrt2}$ | $\dfrac{1}{2}$ | 0 |
| tan | 0 | $\dfrac{1}{\sqrt3}$ | 1 | $\sqrt3$ | $\infty $ |
| csc | $\infty $ | 2 | $\sqrt2$ | $\dfrac{2}{\sqrt3}$ | 1 |
| sec | 1 | $\dfrac{2}{\sqrt3}$ | $\sqrt2$ | 2 | $\infty $ |
| cot | $\infty $ | $\sqrt3$ | 1 | $\dfrac{1}{\sqrt3}$ | 0 |
Complete step-by-step answer:
Let us first calculate the values of $\sin 15{}^\circ $ and $\cos 15{}^\circ $ .
Using the identity $\sin (A-B)=\sin A\cos B-\sin B\cos A$ , we get:
$\sin 15{}^\circ =\sin \left( 45{}^\circ -30{}^\circ \right)=\sin 45{}^\circ \cos 30{}^\circ -\sin 30{}^\circ \cos 45{}^\circ $
Substituting the values of $\sin 45{}^\circ $ , $\cos 30{}^\circ $ , etc.
⇒ $\sin 15{}^\circ =\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)-\left( \dfrac{1}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)$
⇒ $\sin 15{}^\circ =\dfrac{\sqrt{3}-1}{2\sqrt{2}}$
And, using the identity $\cos (A-B)=\cos A\cos B+\sin A\sin B$ , we get:
$\cos 15{}^\circ =\cos \left( 45{}^\circ -30{}^\circ \right)=\cos 45{}^\circ \cos 30{}^\circ +\sin 45{}^\circ \sin 30{}^\circ $
Substituting the values of $\sin 45{}^\circ $ , $\cos 30{}^\circ $ , etc.
⇒ $\cos 15{}^\circ =\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)+\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right)$
⇒ $\cos 15{}^\circ =\dfrac{\sqrt{3}+1}{2\sqrt{2}}$
Now, $\csc 15{}^\circ +\sec 15{}^\circ =\dfrac{1}{\sin 15{}^\circ }+\dfrac{1}{\cos 15{}^\circ }$ . Substituting the values of $\sin 15{}^\circ $ and $\cos 15{}^\circ $ from above, we get:
$\csc 15{}^\circ +\sec 15{}^\circ =\dfrac{1}{\left( \dfrac{\sqrt{3}-1}{2\sqrt{2}} \right)}+\dfrac{1}{\left( \dfrac{\sqrt{3}+1}{2\sqrt{2}} \right)}$
= $\dfrac{2\sqrt{2}}{\sqrt{3}-1}+\dfrac{2\sqrt{2}}{\sqrt{3}+1}$
On equating the denominators, we get:
= $\dfrac{2\sqrt{2}\left( \sqrt{3}+1 \right)}{\left( \sqrt{3}-1 \right)\left( \sqrt{3}+1 \right)}+\dfrac{2\sqrt{2}\left( \sqrt{3}-1 \right)}{\left( \sqrt{3}+1 \right)\left( \sqrt{3}-1 \right)}$
On multiplying the terms in the numerator and denominators, we get:
= $\dfrac{2\sqrt{6}+\sqrt{2}}{3+\sqrt{3}-\sqrt{3}-1}+\dfrac{2\sqrt{6}-\sqrt{2}}{3-\sqrt{3}+\sqrt{3}-1}$
= $\dfrac{2\sqrt{6}+\sqrt{2}}{2}+\dfrac{2\sqrt{6}-\sqrt{2}}{2}$
= $\dfrac{4\sqrt{6}}{2}$
= $2\sqrt{6}$ .
Hence, the correct answer option is C. $2\sqrt{6}$ .
Note: (i) The values of trigonometric ratios for the common angles $0{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ $ are calculated by using Pythagoras's theorem and properties of isosceles triangles for $60{}^\circ -60{}^\circ -60{}^\circ $ and $90{}^\circ -45{}^\circ -45{}^\circ $ triangles.
(ii)If we know the values of trigonometric ratios for the common angles $0{}^\circ ,30{}^\circ ,45{}^\circ ,60{}^\circ ,90{}^\circ $ , we can calculate the values of trigonometric ratios for angles which are sum or differences of these, like $15{}^\circ ,75{}^\circ ,105{}^\circ ,120{}^\circ ,135{}^\circ $ .
(iii)We see that $\sin 2A=2\sin A\cos A$ . Now, we can also find the values of $\sin 3A$ by using the fact that $3A = 2A + A$ , and then $\sin 5A$ as $5A = 3A + 2A$ , and so on.
(iv)Since, ${{\sin }^{2}}A+{{\cos }^{2}}A=1$ , we can always calculate $\cos A$ from $\sin A$ , and then the other ratios follow.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

