
The value of $\cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $ is
$\left( a \right)\dfrac{{23}}{{25}}$
$\left( b \right)\dfrac{{25}}{{23}}$
$\left( c \right)\dfrac{{23}}{{24}}$
$\left( d \right)\dfrac{{24}}{{23}}$
Answer
506.4k+ views
Hint: In this particular question use the concept that ${\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ and use the concept that the summation of first n natural number is \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2}\] so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given equation:
$\cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $.......................... (1)
Now first find the value of
$\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $
Now above equation is also written as
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2\sum\limits_{k = 1}^n k } \right)} $
Now as we know that the summation of first n natural number is \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2}\] so we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} $
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + n\left( {n + 1} \right)} \right)} $
Now as we know that ${\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ so use this property in the above equation we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{1}{{1 + n\left( {n + 1} \right)}}} \right)} $
Now the above equation is also written as
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {n + 1} \right) - 1}}{{1 + n\left( {n + 1} \right)}}} \right)} $
Now as we know that ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$, so use this property in the above equation we have, where x = n + 1, y = n
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {n + 1} \right) - 1}}{{1 + n\left( {n + 1} \right)}}} \right)} = \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} $
Now expand the summation we have,
$\begin{gathered}
\Rightarrow \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} = \left( {{{\tan }^{ - 1}}2 - {{\tan }^{ - 1}}1} \right) + \left( {{{\tan }^{ - 1}}3 - {{\tan }^{ - 1}}2} \right) + \left( {{{\tan }^{ - 1}}4 - {{\tan }^{ - 1}}3} \right) + ...... \\
+ \left( {{{\tan }^{ - 1}}23 - {{\tan }^{ - 1}}22} \right) + \left( {{{\tan }^{ - 1}}24 - {{\tan }^{ - 1}}23} \right) \\
\end{gathered} $
So as we see that all the terms are cancel out except two terms so we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} = {\tan ^{ - 1}}24 - {\tan ^{ - 1}}1$
Now again use that ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ so we have,
\[ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} = {\tan ^{ - 1}}\left( {\dfrac{{24 - 1}}{{1 + 24\left( 1 \right)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{23}}{{25}}} \right) = {\cot ^{ - 1}}\left( {\dfrac{{25}}{{23}}} \right)\]
Now substitute this value in equation (1) we have,
$ \Rightarrow \cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} = \cot \left( {{{\cot }^{ - 1}}\dfrac{{25}}{{23}}} \right) = \dfrac{{25}}{{23}}$
So this is the required answer.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric identity such as ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ and rest of the all are stated above, so first simplify the given equation as above then apply this property and simplify as above and check which of the terms are cancel out as above then again apply this property we will get the required answer.
Complete step-by-step solution:
Given equation:
$\cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $.......................... (1)
Now first find the value of
$\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $
Now above equation is also written as
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2\sum\limits_{k = 1}^n k } \right)} $
Now as we know that the summation of first n natural number is \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2}\] so we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} $
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + n\left( {n + 1} \right)} \right)} $
Now as we know that ${\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ so use this property in the above equation we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{1}{{1 + n\left( {n + 1} \right)}}} \right)} $
Now the above equation is also written as
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {n + 1} \right) - 1}}{{1 + n\left( {n + 1} \right)}}} \right)} $
Now as we know that ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$, so use this property in the above equation we have, where x = n + 1, y = n
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {n + 1} \right) - 1}}{{1 + n\left( {n + 1} \right)}}} \right)} = \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} $
Now expand the summation we have,
$\begin{gathered}
\Rightarrow \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} = \left( {{{\tan }^{ - 1}}2 - {{\tan }^{ - 1}}1} \right) + \left( {{{\tan }^{ - 1}}3 - {{\tan }^{ - 1}}2} \right) + \left( {{{\tan }^{ - 1}}4 - {{\tan }^{ - 1}}3} \right) + ...... \\
+ \left( {{{\tan }^{ - 1}}23 - {{\tan }^{ - 1}}22} \right) + \left( {{{\tan }^{ - 1}}24 - {{\tan }^{ - 1}}23} \right) \\
\end{gathered} $
So as we see that all the terms are cancel out except two terms so we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} = {\tan ^{ - 1}}24 - {\tan ^{ - 1}}1$
Now again use that ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ so we have,
\[ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} = {\tan ^{ - 1}}\left( {\dfrac{{24 - 1}}{{1 + 24\left( 1 \right)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{23}}{{25}}} \right) = {\cot ^{ - 1}}\left( {\dfrac{{25}}{{23}}} \right)\]
Now substitute this value in equation (1) we have,
$ \Rightarrow \cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} = \cot \left( {{{\cot }^{ - 1}}\dfrac{{25}}{{23}}} \right) = \dfrac{{25}}{{23}}$
So this is the required answer.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric identity such as ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ and rest of the all are stated above, so first simplify the given equation as above then apply this property and simplify as above and check which of the terms are cancel out as above then again apply this property we will get the required answer.
Recently Updated Pages
Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

What is history A The science that tries to understand class 6 social science CBSE

Trending doubts
Father of Indian ecology is a Prof R Misra b GS Puri class 12 biology CBSE

Who is considered as the Father of Ecology in India class 12 biology CBSE

Enzymes with heme as prosthetic group are a Catalase class 12 biology CBSE

A deep narrow valley with steep sides formed as a result class 12 biology CBSE

An example of ex situ conservation is a Sacred grove class 12 biology CBSE

Why is insulin not administered orally to a diabetic class 12 biology CBSE
