
The value of $\cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $ is
$\left( a \right)\dfrac{{23}}{{25}}$
$\left( b \right)\dfrac{{25}}{{23}}$
$\left( c \right)\dfrac{{23}}{{24}}$
$\left( d \right)\dfrac{{24}}{{23}}$
Answer
571.2k+ views
Hint: In this particular question use the concept that ${\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ and use the concept that the summation of first n natural number is \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2}\] so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given equation:
$\cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $.......................... (1)
Now first find the value of
$\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $
Now above equation is also written as
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2\sum\limits_{k = 1}^n k } \right)} $
Now as we know that the summation of first n natural number is \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2}\] so we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} $
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + n\left( {n + 1} \right)} \right)} $
Now as we know that ${\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ so use this property in the above equation we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{1}{{1 + n\left( {n + 1} \right)}}} \right)} $
Now the above equation is also written as
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {n + 1} \right) - 1}}{{1 + n\left( {n + 1} \right)}}} \right)} $
Now as we know that ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$, so use this property in the above equation we have, where x = n + 1, y = n
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {n + 1} \right) - 1}}{{1 + n\left( {n + 1} \right)}}} \right)} = \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} $
Now expand the summation we have,
$\begin{gathered}
\Rightarrow \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} = \left( {{{\tan }^{ - 1}}2 - {{\tan }^{ - 1}}1} \right) + \left( {{{\tan }^{ - 1}}3 - {{\tan }^{ - 1}}2} \right) + \left( {{{\tan }^{ - 1}}4 - {{\tan }^{ - 1}}3} \right) + ...... \\
+ \left( {{{\tan }^{ - 1}}23 - {{\tan }^{ - 1}}22} \right) + \left( {{{\tan }^{ - 1}}24 - {{\tan }^{ - 1}}23} \right) \\
\end{gathered} $
So as we see that all the terms are cancel out except two terms so we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} = {\tan ^{ - 1}}24 - {\tan ^{ - 1}}1$
Now again use that ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ so we have,
\[ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} = {\tan ^{ - 1}}\left( {\dfrac{{24 - 1}}{{1 + 24\left( 1 \right)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{23}}{{25}}} \right) = {\cot ^{ - 1}}\left( {\dfrac{{25}}{{23}}} \right)\]
Now substitute this value in equation (1) we have,
$ \Rightarrow \cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} = \cot \left( {{{\cot }^{ - 1}}\dfrac{{25}}{{23}}} \right) = \dfrac{{25}}{{23}}$
So this is the required answer.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric identity such as ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ and rest of the all are stated above, so first simplify the given equation as above then apply this property and simplify as above and check which of the terms are cancel out as above then again apply this property we will get the required answer.
Complete step-by-step solution:
Given equation:
$\cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $.......................... (1)
Now first find the value of
$\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} $
Now above equation is also written as
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2\sum\limits_{k = 1}^n k } \right)} $
Now as we know that the summation of first n natural number is \[\sum\limits_{k = 1}^n k = \dfrac{{n\left( {n + 1} \right)}}{2}\] so we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2\dfrac{{n\left( {n + 1} \right)}}{2}} \right)} $
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + n\left( {n + 1} \right)} \right)} $
Now as we know that ${\cot ^{ - 1}}x = {\tan ^{ - 1}}\left( {\dfrac{1}{x}} \right)$ so use this property in the above equation we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{1}{{1 + n\left( {n + 1} \right)}}} \right)} $
Now the above equation is also written as
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {n + 1} \right) - 1}}{{1 + n\left( {n + 1} \right)}}} \right)} $
Now as we know that ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$, so use this property in the above equation we have, where x = n + 1, y = n
$ \Rightarrow \sum\limits_{n = 1}^{23} {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {n + 1} \right) - 1}}{{1 + n\left( {n + 1} \right)}}} \right)} = \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} $
Now expand the summation we have,
$\begin{gathered}
\Rightarrow \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} = \left( {{{\tan }^{ - 1}}2 - {{\tan }^{ - 1}}1} \right) + \left( {{{\tan }^{ - 1}}3 - {{\tan }^{ - 1}}2} \right) + \left( {{{\tan }^{ - 1}}4 - {{\tan }^{ - 1}}3} \right) + ...... \\
+ \left( {{{\tan }^{ - 1}}23 - {{\tan }^{ - 1}}22} \right) + \left( {{{\tan }^{ - 1}}24 - {{\tan }^{ - 1}}23} \right) \\
\end{gathered} $
So as we see that all the terms are cancel out except two terms so we have,
$ \Rightarrow \sum\limits_{n = 1}^{23} {\left( {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right)} = {\tan ^{ - 1}}24 - {\tan ^{ - 1}}1$
Now again use that ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ so we have,
\[ \Rightarrow \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} = {\tan ^{ - 1}}\left( {\dfrac{{24 - 1}}{{1 + 24\left( 1 \right)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{23}}{{25}}} \right) = {\cot ^{ - 1}}\left( {\dfrac{{25}}{{23}}} \right)\]
Now substitute this value in equation (1) we have,
$ \Rightarrow \cot \sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} = \cot \left( {{{\cot }^{ - 1}}\dfrac{{25}}{{23}}} \right) = \dfrac{{25}}{{23}}$
So this is the required answer.
Hence option (b) is the correct answer.
Note: Whenever we face such types of questions the key concept we have to remember is that always recall the basic trigonometric identity such as ${\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right)$ and rest of the all are stated above, so first simplify the given equation as above then apply this property and simplify as above and check which of the terms are cancel out as above then again apply this property we will get the required answer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

