
The value of $ {\cot ^2}{36^ \circ }{\cot ^2}{72^ \circ } $ is:
(A) $ \dfrac{1}{2} $
(B) $ \dfrac{1}{3} $
(C) $ \dfrac{1}{4} $
(D) $ \dfrac{1}{5} $
Answer
521.1k+ views
Hint: The given question deals with basic simplification of trigonometric e by using some of the simple trigonometric formulae such as $ \cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}} $ . Basic algebraic rules and trigonometric identities are to be kept in mind while doing simplification in the given problem.
Complete step-by-step answer:
In the given problem, we have to simplify the product $ {\cot ^2}{36^ \circ }{\cot ^2}{72^ \circ } $ .
So, $ {\cot ^2}{36^ \circ }{\cot ^2}{72^ \circ } $
We first express the entire trigonometric expression in the terms of sine and cosine so as to simplify the expression.
We know the trigonometric formula $ \cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}} $ . So, we get,
$ \Rightarrow \dfrac{{{{\cos }^2}{{36}^ \circ }}}{{{{\sin }^2}{{36}^ \circ }}} \times \dfrac{{{{\cos }^2}{{72}^ \circ }}}{{{{\sin }^2}{{72}^ \circ }}} $
Now, we know the values of the trigonometric function for the angles $ {36^ \circ } $ and $ {72^ \circ } $ . Hence, we can substitute the values and simplify the expression further.
So, putting in the value of $ \cos \left( {{{36}^ \circ }} \right) $ as $ \left( {\dfrac{{\sqrt 5 + 1}}{4}} \right) $ , value of $ \sin \left( {{{36}^ \circ }} \right) $ as $ \left( {\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}} \right) $ , value of $ \sin \left( {{{72}^ \circ }} \right) $ as $ \left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right) $ and the value of $ \cos \left( {{{72}^ \circ }} \right) $ as $ \left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right) $ . Hence, we get,
$ \Rightarrow \dfrac{{{{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}}}{{{{\left( {\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}} \right)}^2}}} \times \dfrac{{{{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}}}{{{{\left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right)}^2}}} $
Now, we have to evaluate the squares of the terms required and simplify the expression.
$ \Rightarrow \dfrac{{\left( {\dfrac{{5 + 2\sqrt 5 + 1}}{{16}}} \right)}}{{\left( {\dfrac{{10 - 2\sqrt 5 }}{{16}}} \right)}} \times \dfrac{{\left( {\dfrac{{5 - 2\sqrt 5 + 1}}{{16}}} \right)}}{{\left( {\dfrac{{10 + 2\sqrt 5 }}{{16}}} \right)}} $
Cancelling the common factors and simplifying the expression further, we get,
$ \Rightarrow \dfrac{{\left( {5 + 2\sqrt 5 + 1} \right)}}{{\left( {10 - 2\sqrt 5 } \right)}} \times \dfrac{{\left( {5 - 2\sqrt 5 + 1} \right)}}{{\left( {10 + 2\sqrt 5 } \right)}} $
$ \Rightarrow \dfrac{{\left( {6 + 2\sqrt 5 } \right)}}{{\left( {10 - 2\sqrt 5 } \right)}} \times \dfrac{{\left( {6 - 2\sqrt 5 } \right)}}{{\left( {10 + 2\sqrt 5 } \right)}} $
Now, using the algebraic identity $ \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} $ in the numerator and denominator, we get,
$ \Rightarrow \dfrac{{\left( {6 + 2\sqrt 5 } \right)\left( {6 - 2\sqrt 5 } \right)}}{{\left( {10 - 2\sqrt 5 } \right)\left( {10 + 2\sqrt 5 } \right)}} = \dfrac{{{{\left( 6 \right)}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{{{\left( {10} \right)}^2} - {{\left( {2\sqrt 5 } \right)}^2}}} $
$ \Rightarrow \dfrac{{36 - 20}}{{100 - 20}} $
Simplifying the expression further, we get,
$ \Rightarrow \dfrac{{16}}{{80}} $
$ \Rightarrow \dfrac{1}{5} $
Hence, the value of the product $ {\cot ^2}{36^ \circ }{\cot ^2}{72^ \circ } $ is $ \left( {\dfrac{1}{5}} \right) $ by the use of basic algebraic rules and simple trigonometric formulae.
So, the correct answer is “Option D”.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: $ \tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}} $ and $ \cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}} $ . Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. One must now the values of trigonometric functions for the angles $ {36^ \circ } $ and $ {72^ \circ } $ in order to solve the problem.
Complete step-by-step answer:
In the given problem, we have to simplify the product $ {\cot ^2}{36^ \circ }{\cot ^2}{72^ \circ } $ .
So, $ {\cot ^2}{36^ \circ }{\cot ^2}{72^ \circ } $
We first express the entire trigonometric expression in the terms of sine and cosine so as to simplify the expression.
We know the trigonometric formula $ \cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}} $ . So, we get,
$ \Rightarrow \dfrac{{{{\cos }^2}{{36}^ \circ }}}{{{{\sin }^2}{{36}^ \circ }}} \times \dfrac{{{{\cos }^2}{{72}^ \circ }}}{{{{\sin }^2}{{72}^ \circ }}} $
Now, we know the values of the trigonometric function for the angles $ {36^ \circ } $ and $ {72^ \circ } $ . Hence, we can substitute the values and simplify the expression further.
So, putting in the value of $ \cos \left( {{{36}^ \circ }} \right) $ as $ \left( {\dfrac{{\sqrt 5 + 1}}{4}} \right) $ , value of $ \sin \left( {{{36}^ \circ }} \right) $ as $ \left( {\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}} \right) $ , value of $ \sin \left( {{{72}^ \circ }} \right) $ as $ \left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right) $ and the value of $ \cos \left( {{{72}^ \circ }} \right) $ as $ \left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right) $ . Hence, we get,
$ \Rightarrow \dfrac{{{{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2}}}{{{{\left( {\dfrac{{\sqrt {10 - 2\sqrt 5 } }}{4}} \right)}^2}}} \times \dfrac{{{{\left( {\dfrac{{\sqrt 5 - 1}}{4}} \right)}^2}}}{{{{\left( {\dfrac{{\sqrt {10 + 2\sqrt 5 } }}{4}} \right)}^2}}} $
Now, we have to evaluate the squares of the terms required and simplify the expression.
$ \Rightarrow \dfrac{{\left( {\dfrac{{5 + 2\sqrt 5 + 1}}{{16}}} \right)}}{{\left( {\dfrac{{10 - 2\sqrt 5 }}{{16}}} \right)}} \times \dfrac{{\left( {\dfrac{{5 - 2\sqrt 5 + 1}}{{16}}} \right)}}{{\left( {\dfrac{{10 + 2\sqrt 5 }}{{16}}} \right)}} $
Cancelling the common factors and simplifying the expression further, we get,
$ \Rightarrow \dfrac{{\left( {5 + 2\sqrt 5 + 1} \right)}}{{\left( {10 - 2\sqrt 5 } \right)}} \times \dfrac{{\left( {5 - 2\sqrt 5 + 1} \right)}}{{\left( {10 + 2\sqrt 5 } \right)}} $
$ \Rightarrow \dfrac{{\left( {6 + 2\sqrt 5 } \right)}}{{\left( {10 - 2\sqrt 5 } \right)}} \times \dfrac{{\left( {6 - 2\sqrt 5 } \right)}}{{\left( {10 + 2\sqrt 5 } \right)}} $
Now, using the algebraic identity $ \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2} $ in the numerator and denominator, we get,
$ \Rightarrow \dfrac{{\left( {6 + 2\sqrt 5 } \right)\left( {6 - 2\sqrt 5 } \right)}}{{\left( {10 - 2\sqrt 5 } \right)\left( {10 + 2\sqrt 5 } \right)}} = \dfrac{{{{\left( 6 \right)}^2} - {{\left( {2\sqrt 5 } \right)}^2}}}{{{{\left( {10} \right)}^2} - {{\left( {2\sqrt 5 } \right)}^2}}} $
$ \Rightarrow \dfrac{{36 - 20}}{{100 - 20}} $
Simplifying the expression further, we get,
$ \Rightarrow \dfrac{{16}}{{80}} $
$ \Rightarrow \dfrac{1}{5} $
Hence, the value of the product $ {\cot ^2}{36^ \circ }{\cot ^2}{72^ \circ } $ is $ \left( {\dfrac{1}{5}} \right) $ by the use of basic algebraic rules and simple trigonometric formulae.
So, the correct answer is “Option D”.
Note: Given problem deals with Trigonometric functions. For solving such problems, trigonometric formulae should be remembered by heart such as: $ \tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}} $ and $ \cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}} $ . Besides these simple trigonometric formulae, trigonometric identities are also of significant use in such type of questions where we have to simplify trigonometric expressions with help of basic knowledge of algebraic rules and operations. One must now the values of trigonometric functions for the angles $ {36^ \circ } $ and $ {72^ \circ } $ in order to solve the problem.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

