
The value of ${\text{cosec}}{15^ \circ }$ is equal to
A) $2\sqrt 3 $
B) $\sqrt 6 $
C) $2\sqrt 6 $
D) $\sqrt 6 + \sqrt 2 $
Answer
576.3k+ views
Hint:
Calculate the value of $\sin {15^ \circ }$ because $\sin x = \dfrac{1}{{{\text{cosec }}x}}$. Write $\sin {15^ \circ } = \sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)$. Then, solve the value of $\sin {15^ \circ }$ using the identity $\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y$Substitute the values \[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] and then take reciprocal of the $\sin {15^ \circ }$.
Complete step by step solution:
We will first calculate the value of $\sin {15^ \circ }$ because $\sin x = \dfrac{1}{{{\text{cosec }}x}}$
We can write $\sin {15^ \circ } = \sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)$
We will calculate $\sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)$ using the formula, $\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y$
On substituting $x = {45^ \circ },y = {30^ \circ }$in the formula, $\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y$, we get,
$\sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right) = \sin {45^ \circ }\cos {30^ \circ } - \cos {45^ \circ }\sin {30^ \circ }$
On substituting the values of \[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\], we have,
$
\sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right) = \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{1}{2}} \right) \\
= \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
$
Value of $\sin {15^ \circ }$ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Calculate the value of ${\text{cosec}}{15^ \circ }$by taking reciprocal of the terms on both sides.
$
\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
{\text{cosec}}{15^ \circ } = \dfrac{{2\sqrt 2 }}{{\sqrt 3 - 1}} \\
$
Rationalise the above expression by multiplying and dividing by $\sqrt 3 + 1$
$
{\text{cosec}}{15^ \circ } = \dfrac{{2\sqrt 2 }}{{\sqrt 3 - 1}} \times \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}} \\
{\text{cosec}}{15^ \circ } = \dfrac{{2\sqrt 2 \left( {\sqrt 3 + 1} \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - {1^2}}} \\
{\text{cosec}}{15^ \circ } = \dfrac{{2\sqrt 6 + 2\sqrt 2 }}{2} \\
{\text{cosec}}{15^ \circ } = \dfrac{{2\left( {\sqrt 6 + \sqrt 2 } \right)}}{2} \\
{\text{cosec}}{15^ \circ } = \sqrt 6 + \sqrt 2 \\
$
Hence, option D is correct.
Note:
The value of the $\sin \left( {x - y} \right)$ is equal to the $\sin x\cos y - \cos x\sin y$. Also the multiplication of the $\sin $function and the ${\text{cosec}}$ function is equal to 1,mathematically it is represented as $\sin x = \dfrac{1}{{{\text{cosec }}x}}$. The values \[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] should be known.
Calculate the value of $\sin {15^ \circ }$ because $\sin x = \dfrac{1}{{{\text{cosec }}x}}$. Write $\sin {15^ \circ } = \sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)$. Then, solve the value of $\sin {15^ \circ }$ using the identity $\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y$Substitute the values \[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] and then take reciprocal of the $\sin {15^ \circ }$.
Complete step by step solution:
We will first calculate the value of $\sin {15^ \circ }$ because $\sin x = \dfrac{1}{{{\text{cosec }}x}}$
We can write $\sin {15^ \circ } = \sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)$
We will calculate $\sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right)$ using the formula, $\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y$
On substituting $x = {45^ \circ },y = {30^ \circ }$in the formula, $\sin \left( {x - y} \right) = \sin x\cos y - \cos x\sin y$, we get,
$\sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right) = \sin {45^ \circ }\cos {30^ \circ } - \cos {45^ \circ }\sin {30^ \circ }$
On substituting the values of \[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\], we have,
$
\sin \left( {{{45}^ \circ } - {{30}^ \circ }} \right) = \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{{\sqrt 3 }}{2}} \right) - \dfrac{1}{{\sqrt 2 }}\left( {\dfrac{1}{2}} \right) \\
= \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
$
Value of $\sin {15^ \circ }$ is $\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}$
Calculate the value of ${\text{cosec}}{15^ \circ }$by taking reciprocal of the terms on both sides.
$
\sin {15^ \circ } = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
{\text{cosec}}{15^ \circ } = \dfrac{{2\sqrt 2 }}{{\sqrt 3 - 1}} \\
$
Rationalise the above expression by multiplying and dividing by $\sqrt 3 + 1$
$
{\text{cosec}}{15^ \circ } = \dfrac{{2\sqrt 2 }}{{\sqrt 3 - 1}} \times \dfrac{{\sqrt 3 + 1}}{{\sqrt 3 + 1}} \\
{\text{cosec}}{15^ \circ } = \dfrac{{2\sqrt 2 \left( {\sqrt 3 + 1} \right)}}{{{{\left( {\sqrt 3 } \right)}^2} - {1^2}}} \\
{\text{cosec}}{15^ \circ } = \dfrac{{2\sqrt 6 + 2\sqrt 2 }}{2} \\
{\text{cosec}}{15^ \circ } = \dfrac{{2\left( {\sqrt 6 + \sqrt 2 } \right)}}{2} \\
{\text{cosec}}{15^ \circ } = \sqrt 6 + \sqrt 2 \\
$
Hence, option D is correct.
Note:
The value of the $\sin \left( {x - y} \right)$ is equal to the $\sin x\cos y - \cos x\sin y$. Also the multiplication of the $\sin $function and the ${\text{cosec}}$ function is equal to 1,mathematically it is represented as $\sin x = \dfrac{1}{{{\text{cosec }}x}}$. The values \[\sin {30^ \circ } = \dfrac{1}{2},\cos {30^ \circ } = \dfrac{{\sqrt 3 }}{2},\sin {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\] should be known.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

