
The value of cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ is
A. $ \dfrac{3}{4} $
B. $ - \dfrac{3}{4} $
C. $ \dfrac{1}{16} $
D. $ \dfrac{1}{4} $
Answer
577.5k+ views
Hint: In this question, to find the value of cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ , we need to assume $ \left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ = $ \theta $ . Then we will put the value of $ \left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ = $ \theta $ in cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ , we get cos $ \left( {\dfrac{1}{2}\theta } \right) $ . Then we will try to find the value of cos $ \left( {\dfrac{1}{2}\theta } \right) $ .
Complete step-by-step answer:
We have cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $
Let $ \left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ = $ \theta $
Putting the value of $ \left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ in cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ .
We get: cos $ \left( {\dfrac{1}{2}\theta } \right) $
Here, we need to find the value of cos $ \left( {\dfrac{1}{2}\theta } \right) $ .
Now we have;
$ \left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ = $ \theta $
Taking $ {\cos ^{ - 1}} $ to RHS.
Now, $ \cos \theta = \dfrac{1}{8} $
$ \Rightarrow 2{\cos ^2}\dfrac{\theta }{2} - 1 = \dfrac{1}{8} $ (Using the formula $ \cos 2\theta = 2{\cos ^2}\theta - 1 $ )
Taking -1 to RHS.
$ \Rightarrow 2{\cos ^2}\dfrac{\theta }{2} = 1 + \dfrac{1}{8} $
Taking LCM of ( $ 1 + \dfrac{1}{8} $ ), we get;
$ \Rightarrow 2{\cos ^2}\dfrac{\theta }{2} = \dfrac{9}{8} $
$ \Rightarrow {\cos ^2}\dfrac{\theta }{2} = \dfrac{9}{{16}} $
$ \Rightarrow \cos \dfrac{\theta }{2} = \dfrac{3}{4} $ (Ans.)
Thus, the value of cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ is $ \dfrac{3}{4} $ .
So, the correct answer is “Option A”.
Note: Here we have used double angle formula:
$ \cos 2\theta = 2{\cos ^2}\theta - 1 $ = $ {\cos ^2}\theta - {\sin ^2}\theta $ = $ 1 - 2{\sin ^2}\theta $
$ \sin 2\theta = 2\sin \theta \cos \theta $
$ \tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} $
Inverse trigonometric functions: Inverse trigonometric functions are the inverse functions of the basic trigonometric functions which are sine, cosine, tangent, cotangent, secant, and cosecant functions. Inverse trigonometric functions are also called “Arcus Functions”, “Anti-trigonometric functions” or “cyclometric functions” since, for a given value of trigonometric functions, they produce the length of arc needed to obtain that particular value. The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent.
Complete step-by-step answer:
We have cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $
Let $ \left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ = $ \theta $
Putting the value of $ \left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ in cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ .
We get: cos $ \left( {\dfrac{1}{2}\theta } \right) $
Here, we need to find the value of cos $ \left( {\dfrac{1}{2}\theta } \right) $ .
Now we have;
$ \left( {{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ = $ \theta $
Taking $ {\cos ^{ - 1}} $ to RHS.
Now, $ \cos \theta = \dfrac{1}{8} $
$ \Rightarrow 2{\cos ^2}\dfrac{\theta }{2} - 1 = \dfrac{1}{8} $ (Using the formula $ \cos 2\theta = 2{\cos ^2}\theta - 1 $ )
Taking -1 to RHS.
$ \Rightarrow 2{\cos ^2}\dfrac{\theta }{2} = 1 + \dfrac{1}{8} $
Taking LCM of ( $ 1 + \dfrac{1}{8} $ ), we get;
$ \Rightarrow 2{\cos ^2}\dfrac{\theta }{2} = \dfrac{9}{8} $
$ \Rightarrow {\cos ^2}\dfrac{\theta }{2} = \dfrac{9}{{16}} $
$ \Rightarrow \cos \dfrac{\theta }{2} = \dfrac{3}{4} $ (Ans.)
Thus, the value of cos $ \left( {\dfrac{1}{2}{{\cos }^{ - 1}}\dfrac{1}{8}} \right) $ is $ \dfrac{3}{4} $ .
So, the correct answer is “Option A”.
Note: Here we have used double angle formula:
$ \cos 2\theta = 2{\cos ^2}\theta - 1 $ = $ {\cos ^2}\theta - {\sin ^2}\theta $ = $ 1 - 2{\sin ^2}\theta $
$ \sin 2\theta = 2\sin \theta \cos \theta $
$ \tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }} $
Inverse trigonometric functions: Inverse trigonometric functions are the inverse functions of the basic trigonometric functions which are sine, cosine, tangent, cotangent, secant, and cosecant functions. Inverse trigonometric functions are also called “Arcus Functions”, “Anti-trigonometric functions” or “cyclometric functions” since, for a given value of trigonometric functions, they produce the length of arc needed to obtain that particular value. The inverse trigonometric functions perform the opposite operation of the trigonometric functions such as sine, cosine, tangent, cosecant, secant, and cotangent.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

