
The value of $\cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta $ is
A) 0
B) -1
C) $\dfrac{1}{2}$
D) 1
Answer
557.1k+ views
Hint:
Here we will use the periodic identities to simplify the complex terms in the given expression. We will simplify the terms: $\cos \left( {{270}^{\circ }}+\theta \right)$, $\cos \left( {{90}^{{}^\circ }}-\theta \right)$ and $\sin \left( {{270}^{{}^\circ }}-\theta \right)$ using the periodic identities and then we will substitute the simplified value in the given expression. From there, we will get the value of the given expression.
Complete step by step solution:
Given expression is $\cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta $, we need to find the value of the given expression.
We will use periodic identities here.
First we will simplify the term $\cos \left( {{270}^{\circ }}+\theta \right)$ using the periodic identities. We can also write this term as $\cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)$. We know from periodic identities that $\cos \left( {{180}^{\circ }}+A \right)=-\cos A$.
Therefore,
$\Rightarrow \cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)=-\cos \left( {{90}^{\circ }}+\theta \right)$ ……. $\left( 1 \right)$
Now, we will further simplify it. We know from periodic identities that $\cos \left( {{90}^{\circ }}+A \right)=-\sin A$.
Using this periodic identity in equation 1, we get
$\Rightarrow \cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)=-\left( -\sin \theta \right)=\sin \theta $
Hence,
$\Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $ …….. $\left( 2 \right)$
Now, we will simplify the term $\sin \left( {{270}^{\circ }}-\theta \right)$ using the periodic identities. We can also write this term as $\sin \left( {{180}^{\circ }}+\left( {{90}^{\circ }}-\theta \right) \right)$. We know from periodic identities that $\sin \left( {{180}^{\circ }}+A \right)=-\sin A$.
Therefore,
$\Rightarrow \sin \left( {{180}^{\circ }}+\left( {{90}^{\circ }}-\theta \right) \right)=-\sin \left( {{90}^{\circ }}-\theta \right)$ ……. $\left( 3 \right)$
Now, we will further simplify it. We know from periodic identities that $\sin \left( {{90}^{\circ }}-A \right)=\cos A$.
Using this periodic identity in equation 3, we get
$\Rightarrow \sin \left( {{180}^{\circ }}+\left( {{90}^{\circ }}-\theta \right) \right)=-\cos \theta $
Hence,
$\Rightarrow \sin \left( {{270}^{\circ }}-\theta \right)=-\cos \theta $ …….. $\left( 4 \right)$
We know from periodic identities that $\cos \left( {{90}^{\circ }}-A \right)=\sin A$
Therefore, we have
$\Rightarrow \cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ ……. $\left( 5 \right)$
Substituting the simplified value of the terms $\cos \left( {{270}^{\circ }}+\theta \right)$, $\cos \left( {{90}^{{}^\circ }}-\theta \right)$ and $\sin \left( {{270}^{{}^\circ }}-\theta \right)$, we get
$\begin{align}
& \Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta = \\
& \sin \theta .\sin \theta -\left( -\cos \theta \right).\cos \theta \\
\end{align}$
Simplifying the terms, we get
$\begin{align}
& \Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta = \\
& \sin \theta .\sin \theta +\cos \theta .\cos \theta \\
\end{align}$
Multiplying the terms, we get
$\begin{align}
& \Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta = \\
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \\
\end{align}$
We know from trigonometric identities that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Therefore,
$\Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta ={{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Hence, the required value of $\cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta $ is 1.
Therefore, the correct option is option $\left( d \right)$.
Note:
Periodic identities of trigonometry are also known as co-function identities. Remember that all trigonometric identities are periodic in nature i.e. they repeat their values after a certain period but different trigonometric identities have different periodic constants.
Here we will use the periodic identities to simplify the complex terms in the given expression. We will simplify the terms: $\cos \left( {{270}^{\circ }}+\theta \right)$, $\cos \left( {{90}^{{}^\circ }}-\theta \right)$ and $\sin \left( {{270}^{{}^\circ }}-\theta \right)$ using the periodic identities and then we will substitute the simplified value in the given expression. From there, we will get the value of the given expression.
Complete step by step solution:
Given expression is $\cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta $, we need to find the value of the given expression.
We will use periodic identities here.
First we will simplify the term $\cos \left( {{270}^{\circ }}+\theta \right)$ using the periodic identities. We can also write this term as $\cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)$. We know from periodic identities that $\cos \left( {{180}^{\circ }}+A \right)=-\cos A$.
Therefore,
$\Rightarrow \cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)=-\cos \left( {{90}^{\circ }}+\theta \right)$ ……. $\left( 1 \right)$
Now, we will further simplify it. We know from periodic identities that $\cos \left( {{90}^{\circ }}+A \right)=-\sin A$.
Using this periodic identity in equation 1, we get
$\Rightarrow \cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)=-\left( -\sin \theta \right)=\sin \theta $
Hence,
$\Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $ …….. $\left( 2 \right)$
Now, we will simplify the term $\sin \left( {{270}^{\circ }}-\theta \right)$ using the periodic identities. We can also write this term as $\sin \left( {{180}^{\circ }}+\left( {{90}^{\circ }}-\theta \right) \right)$. We know from periodic identities that $\sin \left( {{180}^{\circ }}+A \right)=-\sin A$.
Therefore,
$\Rightarrow \sin \left( {{180}^{\circ }}+\left( {{90}^{\circ }}-\theta \right) \right)=-\sin \left( {{90}^{\circ }}-\theta \right)$ ……. $\left( 3 \right)$
Now, we will further simplify it. We know from periodic identities that $\sin \left( {{90}^{\circ }}-A \right)=\cos A$.
Using this periodic identity in equation 3, we get
$\Rightarrow \sin \left( {{180}^{\circ }}+\left( {{90}^{\circ }}-\theta \right) \right)=-\cos \theta $
Hence,
$\Rightarrow \sin \left( {{270}^{\circ }}-\theta \right)=-\cos \theta $ …….. $\left( 4 \right)$
We know from periodic identities that $\cos \left( {{90}^{\circ }}-A \right)=\sin A$
Therefore, we have
$\Rightarrow \cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ ……. $\left( 5 \right)$
Substituting the simplified value of the terms $\cos \left( {{270}^{\circ }}+\theta \right)$, $\cos \left( {{90}^{{}^\circ }}-\theta \right)$ and $\sin \left( {{270}^{{}^\circ }}-\theta \right)$, we get
$\begin{align}
& \Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta = \\
& \sin \theta .\sin \theta -\left( -\cos \theta \right).\cos \theta \\
\end{align}$
Simplifying the terms, we get
$\begin{align}
& \Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta = \\
& \sin \theta .\sin \theta +\cos \theta .\cos \theta \\
\end{align}$
Multiplying the terms, we get
$\begin{align}
& \Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta = \\
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \\
\end{align}$
We know from trigonometric identities that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$.
Therefore,
$\Rightarrow \cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta ={{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
Hence, the required value of $\cos \left( {{270}^{\circ }}+\theta \right)\cos \left( {{90}^{\circ }}-\theta \right)-\sin \left( {{270}^{\circ }}-\theta \right)\cos \theta $ is 1.
Therefore, the correct option is option $\left( d \right)$.
Note:
Periodic identities of trigonometry are also known as co-function identities. Remember that all trigonometric identities are periodic in nature i.e. they repeat their values after a certain period but different trigonometric identities have different periodic constants.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

