
The value of $\cos ec{15^0} + \sec {15^0} = $
A.$2\sqrt 3 $
B.$\sqrt 6 $
C.$2\sqrt 6 $
D.$\sqrt 6 + \sqrt 2 $
Answer
564.9k+ views
Hint: We have given a trigonometric expression in cosecant and secant. With angle${15^0}$. We have to calculate the value of trigonometric expression. Firstly we write the angle in $A + B{\text{ or }}A - B$ form. The function \[cosecant{\text{ and }}secant\] will be converted in $\cos ec(A + B)$ form and $\sec (A + B)$ form. Then we apply trigonometric formula of $\cos ec(A + B){\text{ and secant}}(A + B)$ or we can convert it in $\sin (A + B){\text{ and cos}}(A + B)$ . After expanding this we will put the values of angles and solve it.
Complete step-by-step answer:
We have given a trigonometric expression. $\cos ec{15^0} + \sec {15^0}$. Angle ${15^0}$ can be written in the difference of two angles ${60^0}$ and ${45^0}$
So ${15^0} = {60^0} - {45^0}$
Therefore \[\cos ec{15^0} + \sec {15^0} = \cos ec({60^0} - {45^0}) + \sec ({60^0} - {45^0})\]
Also we know that $\cos ec\theta = \dfrac{1}{{\sin \theta }}$ and $\sec \theta = \dfrac{1}{{\cos \theta }}$
So $\cos ec{15^0} + \sec {15^0} = \dfrac{1}{{\sin ({{60}^0} - {{45}^0})}} + \dfrac{1}{{\cos ({{60}^0} - {{45}^0})}}{\text{ - - - - - - - - - (i)}}$
We first solve $\sin \left( {{{60}^0} - {{45}^0}} \right)$
$\sin \left( {{{60}^0} - {{45}^0}} \right)$is in the form $\sin \left( {A - B} \right)$
Also we know that
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
So \[\sin \left( {{{60}^0} - {{45}^0}} \right) = \sin {60^0}\cos {45^0} - \cos {60^0}\sin {45^0}\]
Value of \[\sin {60^0} = \dfrac{{\sqrt 3 }}{2},{\text{ }}\cos {45^0} = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^0} = \dfrac{1}{a},{\text{ }}\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Therefore \[\sin \left( {{{60}^0} - {{45}^0}} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
Now we calculate $\cos \left( {60{}^0 - {{45}^0}} \right)$
We know that $\cos \left( {A - B} \right)$
$ = \cos A - \cos B + \sin A\sin B$
So $\cos \left( {{{60}^0} - {{45}^0}} \right) = \cos {60^0}\cos {45^0} + \sin {60^0}\sin {45^0}$
$ = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}$
\[ \Rightarrow \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }} = + \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Putting these values in equation (i)
$\cos ec{15^0} - \sec {15^0} = \dfrac{1}{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}} + \dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}$
$ \Rightarrow \dfrac{{2\sqrt 2 }}{{\sqrt 2 - 1}} + \dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}}$
Taking L.C.H. and solving
$\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 2 \left( {\sqrt 3 + 1} \right) + 2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}$
$\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 6 + 2\sqrt 2 + 2\sqrt 6 - 2\sqrt 2 }}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}}$
$ \Rightarrow \dfrac{{456}}{{31}} \Rightarrow {\text{ }}\dfrac{{4\sqrt 6 }}{2}{\text{ }} \Rightarrow {\text{ }}2\sqrt 6 $
So value of $\cos ec{15^0} + \sec {15^0} = 2\sqrt 6 $
Option (C) is correct .
Note: Trigonometry is the branch of mathematics that studies the relationship between side lengths and angles of the triangle. Trigonometry has six trigonometric functions. Which are ${\text{sin, cos, tan, cosec, sec and cot}}$. Trigonometric functions are the real functions which relate an angle of right angle triangles to the ratio of two sides of a triangle.
Trigonometric functions are also called circular functions. With the help of these trigonometric functions we can drive lots of trigonometric formulas.
Complete step-by-step answer:
We have given a trigonometric expression. $\cos ec{15^0} + \sec {15^0}$. Angle ${15^0}$ can be written in the difference of two angles ${60^0}$ and ${45^0}$
So ${15^0} = {60^0} - {45^0}$
Therefore \[\cos ec{15^0} + \sec {15^0} = \cos ec({60^0} - {45^0}) + \sec ({60^0} - {45^0})\]
Also we know that $\cos ec\theta = \dfrac{1}{{\sin \theta }}$ and $\sec \theta = \dfrac{1}{{\cos \theta }}$
So $\cos ec{15^0} + \sec {15^0} = \dfrac{1}{{\sin ({{60}^0} - {{45}^0})}} + \dfrac{1}{{\cos ({{60}^0} - {{45}^0})}}{\text{ - - - - - - - - - (i)}}$
We first solve $\sin \left( {{{60}^0} - {{45}^0}} \right)$
$\sin \left( {{{60}^0} - {{45}^0}} \right)$is in the form $\sin \left( {A - B} \right)$
Also we know that
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
So \[\sin \left( {{{60}^0} - {{45}^0}} \right) = \sin {60^0}\cos {45^0} - \cos {60^0}\sin {45^0}\]
Value of \[\sin {60^0} = \dfrac{{\sqrt 3 }}{2},{\text{ }}\cos {45^0} = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^0} = \dfrac{1}{a},{\text{ }}\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Therefore \[\sin \left( {{{60}^0} - {{45}^0}} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
Now we calculate $\cos \left( {60{}^0 - {{45}^0}} \right)$
We know that $\cos \left( {A - B} \right)$
$ = \cos A - \cos B + \sin A\sin B$
So $\cos \left( {{{60}^0} - {{45}^0}} \right) = \cos {60^0}\cos {45^0} + \sin {60^0}\sin {45^0}$
$ = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}$
\[ \Rightarrow \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }} = + \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Putting these values in equation (i)
$\cos ec{15^0} - \sec {15^0} = \dfrac{1}{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}} + \dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}$
$ \Rightarrow \dfrac{{2\sqrt 2 }}{{\sqrt 2 - 1}} + \dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}}$
Taking L.C.H. and solving
$\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 2 \left( {\sqrt 3 + 1} \right) + 2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}$
$\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 6 + 2\sqrt 2 + 2\sqrt 6 - 2\sqrt 2 }}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}}$
$ \Rightarrow \dfrac{{456}}{{31}} \Rightarrow {\text{ }}\dfrac{{4\sqrt 6 }}{2}{\text{ }} \Rightarrow {\text{ }}2\sqrt 6 $
So value of $\cos ec{15^0} + \sec {15^0} = 2\sqrt 6 $
Option (C) is correct .
Note: Trigonometry is the branch of mathematics that studies the relationship between side lengths and angles of the triangle. Trigonometry has six trigonometric functions. Which are ${\text{sin, cos, tan, cosec, sec and cot}}$. Trigonometric functions are the real functions which relate an angle of right angle triangles to the ratio of two sides of a triangle.
Trigonometric functions are also called circular functions. With the help of these trigonometric functions we can drive lots of trigonometric formulas.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

