
The value of $\cos ec{15^0} + \sec {15^0} = $
A.$2\sqrt 3 $
B.$\sqrt 6 $
C.$2\sqrt 6 $
D.$\sqrt 6 + \sqrt 2 $
Answer
466.5k+ views
Hint: We have given a trigonometric expression in cosecant and secant. With angle${15^0}$. We have to calculate the value of trigonometric expression. Firstly we write the angle in $A + B{\text{ or }}A - B$ form. The function \[cosecant{\text{ and }}secant\] will be converted in $\cos ec(A + B)$ form and $\sec (A + B)$ form. Then we apply trigonometric formula of $\cos ec(A + B){\text{ and secant}}(A + B)$ or we can convert it in $\sin (A + B){\text{ and cos}}(A + B)$ . After expanding this we will put the values of angles and solve it.
Complete step-by-step answer:
We have given a trigonometric expression. $\cos ec{15^0} + \sec {15^0}$. Angle ${15^0}$ can be written in the difference of two angles ${60^0}$ and ${45^0}$
So ${15^0} = {60^0} - {45^0}$
Therefore \[\cos ec{15^0} + \sec {15^0} = \cos ec({60^0} - {45^0}) + \sec ({60^0} - {45^0})\]
Also we know that $\cos ec\theta = \dfrac{1}{{\sin \theta }}$ and $\sec \theta = \dfrac{1}{{\cos \theta }}$
So $\cos ec{15^0} + \sec {15^0} = \dfrac{1}{{\sin ({{60}^0} - {{45}^0})}} + \dfrac{1}{{\cos ({{60}^0} - {{45}^0})}}{\text{ - - - - - - - - - (i)}}$
We first solve $\sin \left( {{{60}^0} - {{45}^0}} \right)$
$\sin \left( {{{60}^0} - {{45}^0}} \right)$is in the form $\sin \left( {A - B} \right)$
Also we know that
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
So \[\sin \left( {{{60}^0} - {{45}^0}} \right) = \sin {60^0}\cos {45^0} - \cos {60^0}\sin {45^0}\]
Value of \[\sin {60^0} = \dfrac{{\sqrt 3 }}{2},{\text{ }}\cos {45^0} = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^0} = \dfrac{1}{a},{\text{ }}\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Therefore \[\sin \left( {{{60}^0} - {{45}^0}} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
Now we calculate $\cos \left( {60{}^0 - {{45}^0}} \right)$
We know that $\cos \left( {A - B} \right)$
$ = \cos A - \cos B + \sin A\sin B$
So $\cos \left( {{{60}^0} - {{45}^0}} \right) = \cos {60^0}\cos {45^0} + \sin {60^0}\sin {45^0}$
$ = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}$
\[ \Rightarrow \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }} = + \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Putting these values in equation (i)
$\cos ec{15^0} - \sec {15^0} = \dfrac{1}{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}} + \dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}$
$ \Rightarrow \dfrac{{2\sqrt 2 }}{{\sqrt 2 - 1}} + \dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}}$
Taking L.C.H. and solving
$\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 2 \left( {\sqrt 3 + 1} \right) + 2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}$
$\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 6 + 2\sqrt 2 + 2\sqrt 6 - 2\sqrt 2 }}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}}$
$ \Rightarrow \dfrac{{456}}{{31}} \Rightarrow {\text{ }}\dfrac{{4\sqrt 6 }}{2}{\text{ }} \Rightarrow {\text{ }}2\sqrt 6 $
So value of $\cos ec{15^0} + \sec {15^0} = 2\sqrt 6 $
Option (C) is correct .
Note: Trigonometry is the branch of mathematics that studies the relationship between side lengths and angles of the triangle. Trigonometry has six trigonometric functions. Which are ${\text{sin, cos, tan, cosec, sec and cot}}$. Trigonometric functions are the real functions which relate an angle of right angle triangles to the ratio of two sides of a triangle.
Trigonometric functions are also called circular functions. With the help of these trigonometric functions we can drive lots of trigonometric formulas.
Complete step-by-step answer:
We have given a trigonometric expression. $\cos ec{15^0} + \sec {15^0}$. Angle ${15^0}$ can be written in the difference of two angles ${60^0}$ and ${45^0}$
So ${15^0} = {60^0} - {45^0}$
Therefore \[\cos ec{15^0} + \sec {15^0} = \cos ec({60^0} - {45^0}) + \sec ({60^0} - {45^0})\]
Also we know that $\cos ec\theta = \dfrac{1}{{\sin \theta }}$ and $\sec \theta = \dfrac{1}{{\cos \theta }}$
So $\cos ec{15^0} + \sec {15^0} = \dfrac{1}{{\sin ({{60}^0} - {{45}^0})}} + \dfrac{1}{{\cos ({{60}^0} - {{45}^0})}}{\text{ - - - - - - - - - (i)}}$
We first solve $\sin \left( {{{60}^0} - {{45}^0}} \right)$
$\sin \left( {{{60}^0} - {{45}^0}} \right)$is in the form $\sin \left( {A - B} \right)$
Also we know that
\[\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B\]
So \[\sin \left( {{{60}^0} - {{45}^0}} \right) = \sin {60^0}\cos {45^0} - \cos {60^0}\sin {45^0}\]
Value of \[\sin {60^0} = \dfrac{{\sqrt 3 }}{2},{\text{ }}\cos {45^0} = \dfrac{1}{{\sqrt 2 }}\]
\[\cos {60^0} = \dfrac{1}{a},{\text{ }}\sin {45^0} = \dfrac{1}{{\sqrt 2 }}\]
Therefore \[\sin \left( {{{60}^0} - {{45}^0}} \right) = \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }} - \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }}\]
\[ \Rightarrow \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}\]
Now we calculate $\cos \left( {60{}^0 - {{45}^0}} \right)$
We know that $\cos \left( {A - B} \right)$
$ = \cos A - \cos B + \sin A\sin B$
So $\cos \left( {{{60}^0} - {{45}^0}} \right) = \cos {60^0}\cos {45^0} + \sin {60^0}\sin {45^0}$
$ = \dfrac{1}{2} \times \dfrac{1}{{\sqrt 2 }} + \dfrac{{\sqrt 3 }}{2} \times \dfrac{1}{{\sqrt 2 }}$
\[ \Rightarrow \dfrac{{1 + \sqrt 3 }}{{2\sqrt 2 }} = + \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}\]
Putting these values in equation (i)
$\cos ec{15^0} - \sec {15^0} = \dfrac{1}{{\dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }}}} + \dfrac{1}{{\dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}}}$
$ \Rightarrow \dfrac{{2\sqrt 2 }}{{\sqrt 2 - 1}} + \dfrac{{2\sqrt 2 }}{{\sqrt 3 + 1}}$
Taking L.C.H. and solving
$\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 2 \left( {\sqrt 3 + 1} \right) + 2\sqrt 2 \left( {\sqrt 3 - 1} \right)}}{{\left( {\sqrt 3 - 1} \right)\left( {\sqrt 3 + 1} \right)}}$
$\cos ec{15^0} - \sec {15^0} = \dfrac{{2\sqrt 6 + 2\sqrt 2 + 2\sqrt 6 - 2\sqrt 2 }}{{{{\left( {\sqrt 3 } \right)}^2} - {{\left( 1 \right)}^2}}}$
$ \Rightarrow \dfrac{{456}}{{31}} \Rightarrow {\text{ }}\dfrac{{4\sqrt 6 }}{2}{\text{ }} \Rightarrow {\text{ }}2\sqrt 6 $
So value of $\cos ec{15^0} + \sec {15^0} = 2\sqrt 6 $
Option (C) is correct .
Note: Trigonometry is the branch of mathematics that studies the relationship between side lengths and angles of the triangle. Trigonometry has six trigonometric functions. Which are ${\text{sin, cos, tan, cosec, sec and cot}}$. Trigonometric functions are the real functions which relate an angle of right angle triangles to the ratio of two sides of a triangle.
Trigonometric functions are also called circular functions. With the help of these trigonometric functions we can drive lots of trigonometric formulas.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
