
The value of $\cos \dfrac{\pi }{{11}} + \cos \dfrac{{3\pi }}{{11}} + \cos \dfrac{{5\pi }}{{11}} + \cos \dfrac{{7\pi }}{{11}} + \cos \dfrac{{9\pi }}{{11}}$ is:-
$
{\text{A}}{\text{.0}} \\
{\text{B}}{\text{. - }}\dfrac{1}{2} \\
{\text{C}}{\text{.}}\dfrac{1}{2} \\
{\text{D}}{\text{. }}None{\text{ }}of{\text{ }}these \\
$
Answer
610.2k+ views
- Hint- First, we will multiply a term with this given expression to form this expression as in a state, where we can use trigonometry identities. Then, we will change the inappropriate angles according to their range and eventually we will divide the same term from the calculated result.
Complete step-by-step solution -
Multiply the given expression by $\sin \dfrac{{5\pi }}{{11}}$
$ = \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{\pi }{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{3\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{5\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{7\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{9\pi }}{{11}}} \right)$
Using the formula $\sin {\text{C cosD = }}\dfrac{1}{2}\left[ {\sin \left( {{\text{C + D}}} \right) + \sin \left( {{\text{C - D}}} \right)} \right]$
We get,
$ = \dfrac{1}{2}\left[ \begin{gathered}
\left\{ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right)} \right\} + \left\{ {\sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right)} \right\} + \left\{ {\sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( 0 \right)} \right\} + \left\{ {\sin \left( {\dfrac{{12\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right)} \right\} \\
+ \left\{ {\sin \left( {\dfrac{{14\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right)} \right\} \\
\end{gathered} \right]$
Now. To find the exact quadrant of all the angles given we subtract $2\pi $ from the angles whose values are increasing beyond $\pi $.
$
= \dfrac{1}{2}\left[ \begin{gathered}
\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{12\pi }}{{11}} - 2\pi } \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right) + \\
\sin \left( {\dfrac{{14\pi }}{{11}} - 2\pi } \right) + \sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right) \\
\end{gathered} \right] \\
= \dfrac{1}{2}\left[ \begin{gathered}
\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 8\pi }}{{11}}} \right) + \\
\sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right) \\
\end{gathered} \right] \\
$
Now as we know $\sin \left( {{\text{ - }}\theta } \right) = - \sin \theta $
Using this formula we get,$
= \dfrac{1}{2}\left[ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) - \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) - \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) - \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) - \sin \left( {\dfrac{{10\pi }}{{11}}} \right)} \right] \\
= \dfrac{1}{2} \times \left[ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right)} \right] \\
{\text{As sin}}\theta {\text{ = sin}}\left( {\pi {\text{ - }}\theta } \right), \\
= \dfrac{1}{2} \times \left[ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right] \\
$
Since we had multiplied the expression by $\sin \left( {\dfrac{{5\pi }}{{11}}} \right)$ .we divide by the same now
The expression then becomes=$\dfrac{{\left[ {\dfrac{1}{2} \times \left\{ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right\}} \right]}}{{\left\{ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right\}}} = \dfrac{1}{2}$
Note - Given, the trigonometric product identities are important for these type of questions and also one should know the range of angles and how to make an angle within range as only this approach will lead us to an answer and to avoid mistakes do remember to divide the term in the end which is multiplied in the beginning of the solution as it is one of the typical step to remember.
Complete step-by-step solution -
Multiply the given expression by $\sin \dfrac{{5\pi }}{{11}}$
$ = \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{\pi }{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{3\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{5\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{7\pi }}{{11}}} \right) + \sin \left( {\dfrac{{5\pi }}{{11}}} \right)\cos \left( {\dfrac{{9\pi }}{{11}}} \right)$
Using the formula $\sin {\text{C cosD = }}\dfrac{1}{2}\left[ {\sin \left( {{\text{C + D}}} \right) + \sin \left( {{\text{C - D}}} \right)} \right]$
We get,
$ = \dfrac{1}{2}\left[ \begin{gathered}
\left\{ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right)} \right\} + \left\{ {\sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right)} \right\} + \left\{ {\sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( 0 \right)} \right\} + \left\{ {\sin \left( {\dfrac{{12\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right)} \right\} \\
+ \left\{ {\sin \left( {\dfrac{{14\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right)} \right\} \\
\end{gathered} \right]$
Now. To find the exact quadrant of all the angles given we subtract $2\pi $ from the angles whose values are increasing beyond $\pi $.
$
= \dfrac{1}{2}\left[ \begin{gathered}
\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{12\pi }}{{11}} - 2\pi } \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right) + \\
\sin \left( {\dfrac{{14\pi }}{{11}} - 2\pi } \right) + \sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right) \\
\end{gathered} \right] \\
= \dfrac{1}{2}\left[ \begin{gathered}
\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 10\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{ - 8\pi }}{{11}}} \right) + \\
\sin \left( {\dfrac{{ - 4\pi }}{{11}}} \right) \\
\end{gathered} \right] \\
$
Now as we know $\sin \left( {{\text{ - }}\theta } \right) = - \sin \theta $
Using this formula we get,$
= \dfrac{1}{2}\left[ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right) + \sin \left( {\dfrac{{4\pi }}{{11}}} \right) - \sin \left( {\dfrac{{4\pi }}{{11}}} \right) + \sin \left( {\dfrac{{8\pi }}{{11}}} \right) - \sin \left( {\dfrac{{8\pi }}{{11}}} \right) + \sin \left( {\dfrac{{2\pi }}{{11}}} \right) - \sin \left( {\dfrac{{2\pi }}{{11}}} \right) + \sin \left( {\dfrac{{10\pi }}{{11}}} \right) - \sin \left( {\dfrac{{10\pi }}{{11}}} \right)} \right] \\
= \dfrac{1}{2} \times \left[ {\sin \left( {\dfrac{{6\pi }}{{11}}} \right)} \right] \\
{\text{As sin}}\theta {\text{ = sin}}\left( {\pi {\text{ - }}\theta } \right), \\
= \dfrac{1}{2} \times \left[ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right] \\
$
Since we had multiplied the expression by $\sin \left( {\dfrac{{5\pi }}{{11}}} \right)$ .we divide by the same now
The expression then becomes=$\dfrac{{\left[ {\dfrac{1}{2} \times \left\{ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right\}} \right]}}{{\left\{ {\sin \left( {\dfrac{{5\pi }}{{11}}} \right)} \right\}}} = \dfrac{1}{2}$
Note - Given, the trigonometric product identities are important for these type of questions and also one should know the range of angles and how to make an angle within range as only this approach will lead us to an answer and to avoid mistakes do remember to divide the term in the end which is multiplied in the beginning of the solution as it is one of the typical step to remember.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

