
The value of $\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ }$ is
Answer
510.6k+ views
Hint: The simplest way to solve this problem is to use the basic formula in compound angles
\[\cos (A + B) + \cos (A - B) = 2\cos A\cos B\]
To use the above formula we need to first multiply and divide $\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ }$ with 2 .So now we can apply the above mentioned formula and get ($2\cos {65^ \circ }\cos {55^ \circ }$)$\cos {5^ \circ }$.Then the one in bracket can be written as the form of above mentioned formula . Then we substitute the values of cosine of angle ${65^ \circ } + {55^ \circ } = {120^ \circ }$
Now we multiply $\cos {5^ \circ }$ with the simplified terms in brackets. We get $\cos {5^ \circ }\cos {10^ \circ }$ as one of the terms after multiplication with $\cos {5^ \circ }$.To this term we multiply and divide 2. So that we can spit $2\cos {5^ \circ }\cos {10^ \circ }$ using the above mentioned formula. After spitting two terms get subtracted and we are left with only one term .Lastly, we have to assign the value of the remaining trigonometric value of the angle.
Complete step-by-step solution:
In this question we need to find the value of $\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ }$
For solving the question we need following information
$\cos {120^ \circ } = \dfrac{{ - 1}}{2} \\
\cos {15^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} $
\[\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ } \\
= \dfrac{{2\cos {{65}^ \circ }\cos {{55}^ \circ }\cos {5^ \circ }}}{2} \\
= \dfrac{{(2\cos {{65}^ \circ }\cos {{55}^ \circ })\cos {5^ \circ }}}{2} \\
= \dfrac{{(\cos ({{65}^ \circ } + {{55}^ \circ }) + \cos ({{65}^ \circ } - {{55}^ \circ }))\cos {5^ \circ }}}{2} \\
= \dfrac{{(\cos ({{120}^ \circ }) + \cos ({{65}^ \circ } - {{55}^ \circ }))\cos {5^ \circ }}}{2} \\
= \dfrac{{(\cos ({{120}^ \circ }) + \cos ({{10}^ \circ }))\cos {5^ \circ }}}{2} \\
= \dfrac{{\left( { - \dfrac{1}{2} + \cos ({{10}^ \circ })} \right)\cos {5^ \circ }}}{2} \\
= \dfrac{{\left( { - \dfrac{1}{2}} \right)\cos {5^ \circ } + \cos ({{10}^ \circ })\cos {5^ \circ }}}{2} \\
= \dfrac{{\dfrac{{ - \cos {5^ \circ }}}{2} + \cos ({{10}^ \circ })\cos {5^ \circ }}}{2} \\
= \dfrac{{\dfrac{{ - \cos {5^ \circ }}}{2} + \dfrac{{2\cos ({{10}^ \circ })\cos {5^ \circ }}}{2}}}{2} \\
= \dfrac{{ - \cos {5^ \circ } + 2\cos ({{10}^ \circ })\cos {5^ \circ }}}{{2 \times 2}} \\
= \dfrac{{ - \cos {5^ \circ } + (2\cos ({{10}^ \circ })\cos {5^ \circ })}}{4} \\
= \dfrac{{ - \cos {5^ \circ } + \cos ({{10}^ \circ } + {5^ \circ }) + \cos ({{10}^ \circ } - {5^ \circ })}}{4} \\
= \dfrac{{ - \cos {5^ \circ } + \cos ({{15}^ \circ }) + \cos ({5^ \circ })}}{4} \\
= \dfrac{{\cos ({{15}^ \circ }) + \cos ({5^ \circ }) - \cos {5^ \circ }}}{4} \\
= \dfrac{{\cos ({{15}^ \circ })}}{4} \\
= \dfrac{{\sqrt 3 + 1}}{{4 \times 2\sqrt 2 }} \\
= \dfrac{{\sqrt 3 + 1}}{{8\sqrt 2 }} \]
So the value of $\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ }$is \[
\dfrac{{\sqrt 3 + 1}}{{8\sqrt 2 }} \]
Note: In the trigonometric questions like this we generally don’t need the value of each trigonometric term. We can just simplify the expression into trigonometric terms of known angles .In this whole question we used only one basic formula of compound angles. Here we used the formula mentioned in HINT only twice, rest of the problem is just simplification and multiplying and dividing with a constant to convert an expression into a favorable expression which can be simplified using the above mentioned formula.
\[\cos (A + B) + \cos (A - B) = 2\cos A\cos B\]
To use the above formula we need to first multiply and divide $\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ }$ with 2 .So now we can apply the above mentioned formula and get ($2\cos {65^ \circ }\cos {55^ \circ }$)$\cos {5^ \circ }$.Then the one in bracket can be written as the form of above mentioned formula . Then we substitute the values of cosine of angle ${65^ \circ } + {55^ \circ } = {120^ \circ }$
Now we multiply $\cos {5^ \circ }$ with the simplified terms in brackets. We get $\cos {5^ \circ }\cos {10^ \circ }$ as one of the terms after multiplication with $\cos {5^ \circ }$.To this term we multiply and divide 2. So that we can spit $2\cos {5^ \circ }\cos {10^ \circ }$ using the above mentioned formula. After spitting two terms get subtracted and we are left with only one term .Lastly, we have to assign the value of the remaining trigonometric value of the angle.
Complete step-by-step solution:
In this question we need to find the value of $\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ }$
For solving the question we need following information
$\cos {120^ \circ } = \dfrac{{ - 1}}{2} \\
\cos {15^ \circ } = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} $
\[\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ } \\
= \dfrac{{2\cos {{65}^ \circ }\cos {{55}^ \circ }\cos {5^ \circ }}}{2} \\
= \dfrac{{(2\cos {{65}^ \circ }\cos {{55}^ \circ })\cos {5^ \circ }}}{2} \\
= \dfrac{{(\cos ({{65}^ \circ } + {{55}^ \circ }) + \cos ({{65}^ \circ } - {{55}^ \circ }))\cos {5^ \circ }}}{2} \\
= \dfrac{{(\cos ({{120}^ \circ }) + \cos ({{65}^ \circ } - {{55}^ \circ }))\cos {5^ \circ }}}{2} \\
= \dfrac{{(\cos ({{120}^ \circ }) + \cos ({{10}^ \circ }))\cos {5^ \circ }}}{2} \\
= \dfrac{{\left( { - \dfrac{1}{2} + \cos ({{10}^ \circ })} \right)\cos {5^ \circ }}}{2} \\
= \dfrac{{\left( { - \dfrac{1}{2}} \right)\cos {5^ \circ } + \cos ({{10}^ \circ })\cos {5^ \circ }}}{2} \\
= \dfrac{{\dfrac{{ - \cos {5^ \circ }}}{2} + \cos ({{10}^ \circ })\cos {5^ \circ }}}{2} \\
= \dfrac{{\dfrac{{ - \cos {5^ \circ }}}{2} + \dfrac{{2\cos ({{10}^ \circ })\cos {5^ \circ }}}{2}}}{2} \\
= \dfrac{{ - \cos {5^ \circ } + 2\cos ({{10}^ \circ })\cos {5^ \circ }}}{{2 \times 2}} \\
= \dfrac{{ - \cos {5^ \circ } + (2\cos ({{10}^ \circ })\cos {5^ \circ })}}{4} \\
= \dfrac{{ - \cos {5^ \circ } + \cos ({{10}^ \circ } + {5^ \circ }) + \cos ({{10}^ \circ } - {5^ \circ })}}{4} \\
= \dfrac{{ - \cos {5^ \circ } + \cos ({{15}^ \circ }) + \cos ({5^ \circ })}}{4} \\
= \dfrac{{\cos ({{15}^ \circ }) + \cos ({5^ \circ }) - \cos {5^ \circ }}}{4} \\
= \dfrac{{\cos ({{15}^ \circ })}}{4} \\
= \dfrac{{\sqrt 3 + 1}}{{4 \times 2\sqrt 2 }} \\
= \dfrac{{\sqrt 3 + 1}}{{8\sqrt 2 }} \]
So the value of $\cos {65^ \circ }\cos {55^ \circ }\cos {5^ \circ }$is \[
\dfrac{{\sqrt 3 + 1}}{{8\sqrt 2 }} \]
Note: In the trigonometric questions like this we generally don’t need the value of each trigonometric term. We can just simplify the expression into trigonometric terms of known angles .In this whole question we used only one basic formula of compound angles. Here we used the formula mentioned in HINT only twice, rest of the problem is just simplification and multiplying and dividing with a constant to convert an expression into a favorable expression which can be simplified using the above mentioned formula.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

