
The value of $\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$ is
Answer
500.4k+ views
Hint: Generally, trigonometric identities are equalities that involve trigonometric functions and are useful whenever trigonometric functions are involved in an expression or an equation. The six basic trigonometric ratios are sine, cosine, tangent, cosecant, secant, and cotangent and all the fundamental trigonometric identities are derived from the six trigonometric ratios. We need to analyze the given information so that we are able to solve the problem. Here we are asked to calculate the value of$\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$.
We need to apply the appropriate trigonometric identities to obtain the required answer.
Formula to be used:
The trigonometric identities that are used to solve the given problem are as follows.
a) \[cos\left( {A + B} \right) + \cos \left( {A-B} \right) = 2cosAcosB\]
b)\[\cos \left( {A-B} \right) = cosAcosB + \sin A\sin B\]
Complete step by step answer:
The given expression is$\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$.
To find: The value of $\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$
For our convenience, we are rewriting the following terms.
Here, $\cos {52^ \circ }$can be written as$\cos \left( {{{60}^ \circ } - {8^\circ }} \right)$
Similarly, $\cos {68^ \circ }$can be written as$\cos \left( {{{60}^ \circ } + {8^\circ }} \right)$
Also, $\cos {172^ \circ }$ can be written as$\cos \left( {{{180}^ \circ } - {8^\circ }} \right)$
Now, we shall apply the formula\[\cos \left( {A-B} \right) = cosAcosB + \sin A\sin B\]
That is $\cos \left( {{{180}^ \circ } - {8^\circ }} \right) = cos{180^ \circ }cos{8^\circ } + \sin {180^ \circ }\sin {8^\circ }$
$ = - 1 \times \cos {8^\circ } + 0 \times \sin {8^\circ }$
(We know that$\cos {180^\circ } = - 1$ and$\sin {180^\circ } = 0$ )
$ = - \cos {8^\circ }$
Hence, $\cos {172^ \circ }$$ = - \cos {8^\circ }$
Now, we shall substitute the obtained results in the given expression.
$\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = \cos \left( {{{60}^ \circ } - {8^\circ }} \right) + \cos \left( {{{60}^ \circ } + {8^\circ }} \right) - \cos {8^\circ }$
Now, we shall apply the formula \[cos\left( {A + B} \right) + \cos \left( {A-B} \right) = 2cosAcosB\]on the first two terms
$ \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 2\cos {60^ \circ }\cos {8^\circ } - \cos {8^\circ }$
We know that$\cos {60^\circ } = \dfrac{1}{2}$
$ \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 2\dfrac{1}{2}\cos {8^\circ } - \cos {8^\circ }$
$ \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = \cos {8^\circ } - \cos {8^\circ }$
Hence we get$ \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 0$
Note: Generally, the trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified. Here we are asked to calculate the value of $\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$. In this question, we have applied the appropriate trigonometric identities to obtain the desired answer. Hence, the value $\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$ is zero.
We need to apply the appropriate trigonometric identities to obtain the required answer.
Formula to be used:
The trigonometric identities that are used to solve the given problem are as follows.
a) \[cos\left( {A + B} \right) + \cos \left( {A-B} \right) = 2cosAcosB\]
b)\[\cos \left( {A-B} \right) = cosAcosB + \sin A\sin B\]
Complete step by step answer:
The given expression is$\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$.
To find: The value of $\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$
For our convenience, we are rewriting the following terms.
Here, $\cos {52^ \circ }$can be written as$\cos \left( {{{60}^ \circ } - {8^\circ }} \right)$
Similarly, $\cos {68^ \circ }$can be written as$\cos \left( {{{60}^ \circ } + {8^\circ }} \right)$
Also, $\cos {172^ \circ }$ can be written as$\cos \left( {{{180}^ \circ } - {8^\circ }} \right)$
Now, we shall apply the formula\[\cos \left( {A-B} \right) = cosAcosB + \sin A\sin B\]
That is $\cos \left( {{{180}^ \circ } - {8^\circ }} \right) = cos{180^ \circ }cos{8^\circ } + \sin {180^ \circ }\sin {8^\circ }$
$ = - 1 \times \cos {8^\circ } + 0 \times \sin {8^\circ }$
(We know that$\cos {180^\circ } = - 1$ and$\sin {180^\circ } = 0$ )
$ = - \cos {8^\circ }$
Hence, $\cos {172^ \circ }$$ = - \cos {8^\circ }$
Now, we shall substitute the obtained results in the given expression.
$\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = \cos \left( {{{60}^ \circ } - {8^\circ }} \right) + \cos \left( {{{60}^ \circ } + {8^\circ }} \right) - \cos {8^\circ }$
Now, we shall apply the formula \[cos\left( {A + B} \right) + \cos \left( {A-B} \right) = 2cosAcosB\]on the first two terms
$ \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 2\cos {60^ \circ }\cos {8^\circ } - \cos {8^\circ }$
We know that$\cos {60^\circ } = \dfrac{1}{2}$
$ \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 2\dfrac{1}{2}\cos {8^\circ } - \cos {8^\circ }$
$ \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = \cos {8^\circ } - \cos {8^\circ }$
Hence we get$ \Rightarrow \cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ } = 0$
Note: Generally, the trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified. Here we are asked to calculate the value of $\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$. In this question, we have applied the appropriate trigonometric identities to obtain the desired answer. Hence, the value $\cos {52^ \circ } + \cos {68^ \circ } + \cos {172^ \circ }$ is zero.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

