
The value of \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is equal to
(a) \[\dfrac{\pi }{6}\]
(b) \[\dfrac{\pi }{3}\]
(c) \[\dfrac{{2\pi }}{3}\]
(d) \[\dfrac{\pi }{4}\]
Answer
558k+ views
Hint: Here, we need to find the value of the given expression. We will equate each term of the given expression to a variable and form an equation. We will simplify each of these equations using trigonometric ratios of specific angles. Then, we will rewrite and simplify the given expression to get the required answer.
Complete step-by-step answer:
Let \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \], and \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \].
We will simplify the two equations to find the values of \[\alpha \] and \[\beta \]. Then, we will use these values of \[\alpha \] and \[\beta \] to simplify and obtain the value of the given expression.
Rewriting the given expression, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta \]
First, we will simplify the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \].
Rewriting the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \], we get
\[ \Rightarrow \cos \alpha = \dfrac{1}{2}\]
The cosine of the angle measuring \[\dfrac{\pi }{3}\] is \[\dfrac{1}{2}\]. This can be written as \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\].
From the equations \[\cos \alpha = \dfrac{1}{2}\] and \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[ \Rightarrow \cos \alpha = \cos \dfrac{\pi }{3}\]
Therefore, we get
\[ \Rightarrow \alpha = \dfrac{\pi }{3}\]
Next, we will simplify the equation \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \].
Rewriting the equation \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \], we get
\[ \Rightarrow \sin \beta = \dfrac{1}{2}\]
The sine of the angle measuring \[\dfrac{\pi }{6}\] is \[\dfrac{1}{2}\]. This can be written as \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\].
From the equations \[\sin \beta = \dfrac{1}{2}\] and \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\], we get
\[ \Rightarrow \sin \beta = \sin \dfrac{\pi }{6}\]
Therefore, we get
\[ \Rightarrow \beta = \dfrac{\pi }{6}\]
Now, we will evaluate the given expression.
Substituting \[\alpha = \dfrac{\pi }{3}\] and \[\beta = \dfrac{\pi }{6}\] in the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta \], we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + 2\left( {\dfrac{\pi }{6}} \right)\]
Simplifying the expression, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + \dfrac{\pi }{3}\]
Taking the L.C.M., we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{\pi + \pi }}{3}\]
Adding the like terms, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{2\pi }}{3}\]
\[\therefore \] The value of the given expression \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is \[\dfrac{{2\pi }}{3}\].
Thus, the correct option is option (c).
Note: We need to keep in mind the range of the trigonometric inverse functions. The range of \[{\cos ^{ - 1}}\left( x \right)\] is \[\left[ {0,\pi } \right]\] and the range of \[{\sin ^{ - 1}}\left( x \right)\] is \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
A common mistake is to use either \[\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}\], or \[\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}\], or both. This is because if \[\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}\], then \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{3}\], which does not lie in the range of \[{\cos ^{ - 1}}\left( x \right)\], that is \[\left[ {0,\pi } \right]\]. Similarly, if \[\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}\], then \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{6}\], which does not lie in the range of \[{\sin ^{ - 1}}\left( x \right)\], that is \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
Complete step-by-step answer:
Let \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \], and \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \].
We will simplify the two equations to find the values of \[\alpha \] and \[\beta \]. Then, we will use these values of \[\alpha \] and \[\beta \] to simplify and obtain the value of the given expression.
Rewriting the given expression, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta \]
First, we will simplify the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \].
Rewriting the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \], we get
\[ \Rightarrow \cos \alpha = \dfrac{1}{2}\]
The cosine of the angle measuring \[\dfrac{\pi }{3}\] is \[\dfrac{1}{2}\]. This can be written as \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\].
From the equations \[\cos \alpha = \dfrac{1}{2}\] and \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[ \Rightarrow \cos \alpha = \cos \dfrac{\pi }{3}\]
Therefore, we get
\[ \Rightarrow \alpha = \dfrac{\pi }{3}\]
Next, we will simplify the equation \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \].
Rewriting the equation \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \], we get
\[ \Rightarrow \sin \beta = \dfrac{1}{2}\]
The sine of the angle measuring \[\dfrac{\pi }{6}\] is \[\dfrac{1}{2}\]. This can be written as \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\].
From the equations \[\sin \beta = \dfrac{1}{2}\] and \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\], we get
\[ \Rightarrow \sin \beta = \sin \dfrac{\pi }{6}\]
Therefore, we get
\[ \Rightarrow \beta = \dfrac{\pi }{6}\]
Now, we will evaluate the given expression.
Substituting \[\alpha = \dfrac{\pi }{3}\] and \[\beta = \dfrac{\pi }{6}\] in the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta \], we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + 2\left( {\dfrac{\pi }{6}} \right)\]
Simplifying the expression, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + \dfrac{\pi }{3}\]
Taking the L.C.M., we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{\pi + \pi }}{3}\]
Adding the like terms, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{2\pi }}{3}\]
\[\therefore \] The value of the given expression \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is \[\dfrac{{2\pi }}{3}\].
Thus, the correct option is option (c).
Note: We need to keep in mind the range of the trigonometric inverse functions. The range of \[{\cos ^{ - 1}}\left( x \right)\] is \[\left[ {0,\pi } \right]\] and the range of \[{\sin ^{ - 1}}\left( x \right)\] is \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
A common mistake is to use either \[\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}\], or \[\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}\], or both. This is because if \[\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}\], then \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{3}\], which does not lie in the range of \[{\cos ^{ - 1}}\left( x \right)\], that is \[\left[ {0,\pi } \right]\]. Similarly, if \[\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}\], then \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{6}\], which does not lie in the range of \[{\sin ^{ - 1}}\left( x \right)\], that is \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

