
The value of \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is equal to
(a) \[\dfrac{\pi }{6}\]
(b) \[\dfrac{\pi }{3}\]
(c) \[\dfrac{{2\pi }}{3}\]
(d) \[\dfrac{\pi }{4}\]
Answer
487.8k+ views
Hint: Here, we need to find the value of the given expression. We will equate each term of the given expression to a variable and form an equation. We will simplify each of these equations using trigonometric ratios of specific angles. Then, we will rewrite and simplify the given expression to get the required answer.
Complete step-by-step answer:
Let \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \], and \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \].
We will simplify the two equations to find the values of \[\alpha \] and \[\beta \]. Then, we will use these values of \[\alpha \] and \[\beta \] to simplify and obtain the value of the given expression.
Rewriting the given expression, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta \]
First, we will simplify the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \].
Rewriting the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \], we get
\[ \Rightarrow \cos \alpha = \dfrac{1}{2}\]
The cosine of the angle measuring \[\dfrac{\pi }{3}\] is \[\dfrac{1}{2}\]. This can be written as \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\].
From the equations \[\cos \alpha = \dfrac{1}{2}\] and \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[ \Rightarrow \cos \alpha = \cos \dfrac{\pi }{3}\]
Therefore, we get
\[ \Rightarrow \alpha = \dfrac{\pi }{3}\]
Next, we will simplify the equation \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \].
Rewriting the equation \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \], we get
\[ \Rightarrow \sin \beta = \dfrac{1}{2}\]
The sine of the angle measuring \[\dfrac{\pi }{6}\] is \[\dfrac{1}{2}\]. This can be written as \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\].
From the equations \[\sin \beta = \dfrac{1}{2}\] and \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\], we get
\[ \Rightarrow \sin \beta = \sin \dfrac{\pi }{6}\]
Therefore, we get
\[ \Rightarrow \beta = \dfrac{\pi }{6}\]
Now, we will evaluate the given expression.
Substituting \[\alpha = \dfrac{\pi }{3}\] and \[\beta = \dfrac{\pi }{6}\] in the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta \], we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + 2\left( {\dfrac{\pi }{6}} \right)\]
Simplifying the expression, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + \dfrac{\pi }{3}\]
Taking the L.C.M., we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{\pi + \pi }}{3}\]
Adding the like terms, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{2\pi }}{3}\]
\[\therefore \] The value of the given expression \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is \[\dfrac{{2\pi }}{3}\].
Thus, the correct option is option (c).
Note: We need to keep in mind the range of the trigonometric inverse functions. The range of \[{\cos ^{ - 1}}\left( x \right)\] is \[\left[ {0,\pi } \right]\] and the range of \[{\sin ^{ - 1}}\left( x \right)\] is \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
A common mistake is to use either \[\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}\], or \[\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}\], or both. This is because if \[\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}\], then \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{3}\], which does not lie in the range of \[{\cos ^{ - 1}}\left( x \right)\], that is \[\left[ {0,\pi } \right]\]. Similarly, if \[\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}\], then \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{6}\], which does not lie in the range of \[{\sin ^{ - 1}}\left( x \right)\], that is \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
Complete step-by-step answer:
Let \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \], and \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \].
We will simplify the two equations to find the values of \[\alpha \] and \[\beta \]. Then, we will use these values of \[\alpha \] and \[\beta \] to simplify and obtain the value of the given expression.
Rewriting the given expression, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta \]
First, we will simplify the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \].
Rewriting the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha \], we get
\[ \Rightarrow \cos \alpha = \dfrac{1}{2}\]
The cosine of the angle measuring \[\dfrac{\pi }{3}\] is \[\dfrac{1}{2}\]. This can be written as \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\].
From the equations \[\cos \alpha = \dfrac{1}{2}\] and \[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[ \Rightarrow \cos \alpha = \cos \dfrac{\pi }{3}\]
Therefore, we get
\[ \Rightarrow \alpha = \dfrac{\pi }{3}\]
Next, we will simplify the equation \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \].
Rewriting the equation \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \beta \], we get
\[ \Rightarrow \sin \beta = \dfrac{1}{2}\]
The sine of the angle measuring \[\dfrac{\pi }{6}\] is \[\dfrac{1}{2}\]. This can be written as \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\].
From the equations \[\sin \beta = \dfrac{1}{2}\] and \[\sin \dfrac{\pi }{6} = \dfrac{1}{2}\], we get
\[ \Rightarrow \sin \beta = \sin \dfrac{\pi }{6}\]
Therefore, we get
\[ \Rightarrow \beta = \dfrac{\pi }{6}\]
Now, we will evaluate the given expression.
Substituting \[\alpha = \dfrac{\pi }{3}\] and \[\beta = \dfrac{\pi }{6}\] in the equation \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \alpha + 2\beta \], we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + 2\left( {\dfrac{\pi }{6}} \right)\]
Simplifying the expression, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{\pi }{3} + \dfrac{\pi }{3}\]
Taking the L.C.M., we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{\pi + \pi }}{3}\]
Adding the like terms, we get
\[ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{2\pi }}{3}\]
\[\therefore \] The value of the given expression \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) + 2{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right)\] is \[\dfrac{{2\pi }}{3}\].
Thus, the correct option is option (c).
Note: We need to keep in mind the range of the trigonometric inverse functions. The range of \[{\cos ^{ - 1}}\left( x \right)\] is \[\left[ {0,\pi } \right]\] and the range of \[{\sin ^{ - 1}}\left( x \right)\] is \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
A common mistake is to use either \[\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}\], or \[\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}\], or both. This is because if \[\cos \dfrac{{5\pi }}{3} = \dfrac{1}{2}\], then \[{\cos ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{3}\], which does not lie in the range of \[{\cos ^{ - 1}}\left( x \right)\], that is \[\left[ {0,\pi } \right]\]. Similarly, if \[\sin \dfrac{{5\pi }}{6} = \dfrac{1}{2}\], then \[{\sin ^{ - 1}}\left( {\dfrac{1}{2}} \right) = \dfrac{{5\pi }}{6}\], which does not lie in the range of \[{\sin ^{ - 1}}\left( x \right)\], that is \[\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

In which part of the body the blood is purified oxygenation class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
