
The value of ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right)$ is
A.$\dfrac{\pi }{2}$
B.$\dfrac{{5\pi }}{3}$
C.$\dfrac{{10\pi }}{3}$
D.0
Answer
580.5k+ views
Hint: We will first simplify the given expression using the properties of inverse trigonometry such as ${\cos ^{ - 1}}\left( {\cos x} \right) = x$, when $x \in \left[ {0,\pi } \right]$ and ${\sin ^{ - 1}}\left( {\sin x} \right) = x$ when $x \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$. Then, we will substitute and simplify the values to get the required answer.
Complete step by step answer:
We have to find the value of ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right)$
It is known that ${\cos ^{ - 1}}\left( {\cos x} \right) = x$, when $x \in \left[ {0,\pi } \right]$ and ${\sin ^{ - 1}}\left( {\sin x} \right) = x$ when $x \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$
We will rewrite the angles using the formulas of trigonometry.
We can rewrite the angle as\[\cos \left( {\dfrac{{5\pi }}{3}} \right) = \cos \left( {2\pi - \dfrac{\pi }{3}} \right)\]
Also, $\cos \left( {2\pi - \theta } \right) = \cos \theta $
Therefore, \[\cos \left( {2\pi - \dfrac{\pi }{3}} \right) = \cos \dfrac{\pi }{3}\]
On substituting the values in the given expression, we get,
${\cos ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right) + {\sin ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right)$
Now, we know that $\cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right)$
Hence,
$
\cos \dfrac{\pi }{3} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{3}} \right) \\
\Rightarrow \cos \dfrac{\pi }{3} = \sin \left( {\dfrac{\pi }{6}} \right) \\
$
We can now write the given expression as,
${\cos ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{6}} \right)$
We will use the property ${\cos ^{ - 1}}\left( {\cos x} \right) = x$, when $x \in \left[ {0,\pi } \right]$ and ${\sin ^{ - 1}}\left( {\sin x} \right) = x$ when $x \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$ to further simplify.
$\Rightarrow\dfrac{\pi }{3} + \dfrac{\pi }{6} = \dfrac{\pi }{2}$
Hence, option A is correct.
Note: We cannot directly write ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right)$ as $\dfrac{{5\pi }}{3}$ because the range of ${\cos ^{ - 1}}x$ is $\left[ {0,\pi } \right]$ and $\dfrac{{5\pi }}{3} > \pi $. Similarly, the range of ${\sin ^{ - 1}}x$ is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$. Many students make mistakes by simply writing the values without considering the range.
Complete step by step answer:
We have to find the value of ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right) + {\sin ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right)$
It is known that ${\cos ^{ - 1}}\left( {\cos x} \right) = x$, when $x \in \left[ {0,\pi } \right]$ and ${\sin ^{ - 1}}\left( {\sin x} \right) = x$ when $x \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$
We will rewrite the angles using the formulas of trigonometry.
We can rewrite the angle as\[\cos \left( {\dfrac{{5\pi }}{3}} \right) = \cos \left( {2\pi - \dfrac{\pi }{3}} \right)\]
Also, $\cos \left( {2\pi - \theta } \right) = \cos \theta $
Therefore, \[\cos \left( {2\pi - \dfrac{\pi }{3}} \right) = \cos \dfrac{\pi }{3}\]
On substituting the values in the given expression, we get,
${\cos ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right) + {\sin ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right)$
Now, we know that $\cos \theta = \sin \left( {\dfrac{\pi }{2} - \theta } \right)$
Hence,
$
\cos \dfrac{\pi }{3} = \sin \left( {\dfrac{\pi }{2} - \dfrac{\pi }{3}} \right) \\
\Rightarrow \cos \dfrac{\pi }{3} = \sin \left( {\dfrac{\pi }{6}} \right) \\
$
We can now write the given expression as,
${\cos ^{ - 1}}\left( {\cos \dfrac{\pi }{3}} \right) + {\sin ^{ - 1}}\left( {\sin \dfrac{\pi }{6}} \right)$
We will use the property ${\cos ^{ - 1}}\left( {\cos x} \right) = x$, when $x \in \left[ {0,\pi } \right]$ and ${\sin ^{ - 1}}\left( {\sin x} \right) = x$ when $x \in \left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$ to further simplify.
$\Rightarrow\dfrac{\pi }{3} + \dfrac{\pi }{6} = \dfrac{\pi }{2}$
Hence, option A is correct.
Note: We cannot directly write ${\cos ^{ - 1}}\left( {\cos \dfrac{{5\pi }}{3}} \right)$ as $\dfrac{{5\pi }}{3}$ because the range of ${\cos ^{ - 1}}x$ is $\left[ {0,\pi } \right]$ and $\dfrac{{5\pi }}{3} > \pi $. Similarly, the range of ${\sin ^{ - 1}}x$ is $\left[ { - \dfrac{\pi }{2},\dfrac{\pi }{2}} \right]$. Many students make mistakes by simply writing the values without considering the range.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

