
The value of $\cos {15^0} - \sin {15^0}$ is
A). 0
B). $\dfrac{1}{{\sqrt 2 }}$
C). $ - \dfrac{1}{{\sqrt 2 }}$
D). $\dfrac{1}{{2\sqrt 2 }}$
Answer
585.6k+ views
Hint- Here we have to find the value of \[\cos {15^0}\] and $\sin {15^0}$ . Since we don’t know these values directly but we can convert it into the known values of 30° and 45° with the help of trigonometric identities then we can get the required value very easily.
Complete step-by-step solution -
$
\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
\sin (A - B) = \sin A\cos B - \cos A\sin B \\
$
First we will find the value of $\sin {15^0}$
The angle ${15^0}$ can be written as the difference of two know angles as $\left( {{{45}^0} - {{30}^0}} \right)$
Therefore
\[\sin {15^0} = \sin \left( {{{45}^0} - {{30}^0}} \right)\]
Now we will solve the above equation using trigonometric identities
$ \Rightarrow \sin \left( {{{45}^0} - {{30}^0}} \right)$
Using the trigonometric identity $\sin (A - B) = \sin A\cos B - \cos A\sin B$ and comparing with the above equation, we get $A = {45^0},B = {30^0}$
Substituting these values in the above formula, we get
$
\Rightarrow \sin (A - B) = \sin A\cos B - \cos A\sin B \\
\Rightarrow \sin ({45^0} - {30^0}) = \sin {45^0} \times \cos {30^0} - \cos {45^0}\sin {30^0} \\
$
As we know that $\left[ \
\sin {30^0} = \dfrac{1}{2},\sin {45^0} = \dfrac{1}{{\sqrt 2 }},
\cos {30^0} = \dfrac{{\sqrt 3 }}{2},\cos {45^0} = \dfrac{1}{{\sqrt 2 }} \right]$
Substituting these values in the above equation, we get
$
\Rightarrow \sin ({45^0} - {30^0}) = \sin {45^0} \times \cos {30^0} - \cos {45^0}\sin {30^0} \\
\Rightarrow \sin ({45^0} - {30^0}) = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2} \\
\Rightarrow \sin ({15^0}) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
$
Now, we will find the value of $\cos {15^0}$
The angle ${15^0}$ can be written as the difference of two know angles as $\left( {{{45}^0} - {{30}^0}} \right)$
Therefore
\[\cos {15^0} = \cos \left( {{{45}^0} - {{30}^0}} \right)\]
Now we will solve the above equation using trigonometric identities
$ \Rightarrow \cos \left( {{{45}^0} - {{30}^0}} \right)$
Using the trigonometric identity $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$ and comparing with the above equation, we get $A = {45^0},B = {30^0}$
Substituting these values in the above formula, we get
$
\Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
\Rightarrow \cos ({45^0} - {30^0}) = \cos {45^0} \times \cos {30^0} + \sin {45^0}\sin {30^0} \\
$
As we know that $\left[
\sin {30^0} = \dfrac{1}{2},\sin {45^0} = \dfrac{1}{{\sqrt 2 }},
\cos {30^0} = \dfrac{{\sqrt 3 }}{2},\cos {45^0} = \dfrac{1}{{\sqrt 2 }} \right]$
Substituting these values in the above equation, we get
$
\Rightarrow \cos ({45^0} - {30^0}) = \cos {45^0} \times \cos {30^0} + \sin {45^0}\sin {30^0} \\
\Rightarrow \cos ({45^0} - {30^0}) = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2} \\
\Rightarrow \cos ({15^0}) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} \\
$
Since, we get the value of $\sin {15^0}$ and $\cos {15^0}$
Therefore
$ \Rightarrow \cos {15^0} - \sin {15^0}$
Substituting the value of $\sin {15^0}$ and $\cos {15^0}$ in the above equation, we get
$
\Rightarrow \cos {15^0} - \sin {15^0} \\
\Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
\Rightarrow \dfrac {2}{2\sqrt{2}} \\
\Rightarrow \dfrac{1}{{\sqrt 2 }} \\
$
Hence, the correct option is B.
Note- In order to solve these types of questions, you need to remember all trigonometric identities and then need to apply identity according to the question. In the above question we have found the value of $\sin {15^0}$ and $\cos {15^0}$ and then we have to take their difference. So, accordingly we use the identity we needed. In other questions, we may need other identities so learn all identities and values of the important angles from the table.
Complete step-by-step solution -
$
\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
\sin (A - B) = \sin A\cos B - \cos A\sin B \\
$
First we will find the value of $\sin {15^0}$
The angle ${15^0}$ can be written as the difference of two know angles as $\left( {{{45}^0} - {{30}^0}} \right)$
Therefore
\[\sin {15^0} = \sin \left( {{{45}^0} - {{30}^0}} \right)\]
Now we will solve the above equation using trigonometric identities
$ \Rightarrow \sin \left( {{{45}^0} - {{30}^0}} \right)$
Using the trigonometric identity $\sin (A - B) = \sin A\cos B - \cos A\sin B$ and comparing with the above equation, we get $A = {45^0},B = {30^0}$
Substituting these values in the above formula, we get
$
\Rightarrow \sin (A - B) = \sin A\cos B - \cos A\sin B \\
\Rightarrow \sin ({45^0} - {30^0}) = \sin {45^0} \times \cos {30^0} - \cos {45^0}\sin {30^0} \\
$
As we know that $\left[ \
\sin {30^0} = \dfrac{1}{2},\sin {45^0} = \dfrac{1}{{\sqrt 2 }},
\cos {30^0} = \dfrac{{\sqrt 3 }}{2},\cos {45^0} = \dfrac{1}{{\sqrt 2 }} \right]$
Substituting these values in the above equation, we get
$
\Rightarrow \sin ({45^0} - {30^0}) = \sin {45^0} \times \cos {30^0} - \cos {45^0}\sin {30^0} \\
\Rightarrow \sin ({45^0} - {30^0}) = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} - \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2} \\
\Rightarrow \sin ({15^0}) = \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
$
Now, we will find the value of $\cos {15^0}$
The angle ${15^0}$ can be written as the difference of two know angles as $\left( {{{45}^0} - {{30}^0}} \right)$
Therefore
\[\cos {15^0} = \cos \left( {{{45}^0} - {{30}^0}} \right)\]
Now we will solve the above equation using trigonometric identities
$ \Rightarrow \cos \left( {{{45}^0} - {{30}^0}} \right)$
Using the trigonometric identity $\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B$ and comparing with the above equation, we get $A = {45^0},B = {30^0}$
Substituting these values in the above formula, we get
$
\Rightarrow \cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B \\
\Rightarrow \cos ({45^0} - {30^0}) = \cos {45^0} \times \cos {30^0} + \sin {45^0}\sin {30^0} \\
$
As we know that $\left[
\sin {30^0} = \dfrac{1}{2},\sin {45^0} = \dfrac{1}{{\sqrt 2 }},
\cos {30^0} = \dfrac{{\sqrt 3 }}{2},\cos {45^0} = \dfrac{1}{{\sqrt 2 }} \right]$
Substituting these values in the above equation, we get
$
\Rightarrow \cos ({45^0} - {30^0}) = \cos {45^0} \times \cos {30^0} + \sin {45^0}\sin {30^0} \\
\Rightarrow \cos ({45^0} - {30^0}) = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 3 }}{2} + \dfrac{1}{{\sqrt 2 }} \times \dfrac{1}{2} \\
\Rightarrow \cos ({15^0}) = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} \\
$
Since, we get the value of $\sin {15^0}$ and $\cos {15^0}$
Therefore
$ \Rightarrow \cos {15^0} - \sin {15^0}$
Substituting the value of $\sin {15^0}$ and $\cos {15^0}$ in the above equation, we get
$
\Rightarrow \cos {15^0} - \sin {15^0} \\
\Rightarrow \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 - 1}}{{2\sqrt 2 }} \\
\Rightarrow \dfrac {2}{2\sqrt{2}} \\
\Rightarrow \dfrac{1}{{\sqrt 2 }} \\
$
Hence, the correct option is B.
Note- In order to solve these types of questions, you need to remember all trigonometric identities and then need to apply identity according to the question. In the above question we have found the value of $\sin {15^0}$ and $\cos {15^0}$ and then we have to take their difference. So, accordingly we use the identity we needed. In other questions, we may need other identities so learn all identities and values of the important angles from the table.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

