
The value of \[{{\cos }^{-1}}(-1)-{{\sin }^{-1}}(1)\] is:
A. \[\pi \]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{3\pi }{2}\]
D. \[-\dfrac{3\pi }{2}\]
Answer
610.8k+ views
Hint: For the above question we will have to know about \[{{\cos }^{-1}}x\] and \[si{{n}^{-1}}x\] are the inverse trigonometric function. The domain of both \[{{\cos }^{-1}}x\] and \[si{{n}^{-1}}x\] is \[\left[ -1,1 \right]\] and the range of \[si{{n}^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\] and the range of \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\]. So we will substitute the value of \[{{\cos }^{-1}}(-1)\] and \[{{\sin }^{-1}}(1)\] in the given expression to get the answer.
Complete step-by-step answer:
We have been given \[{{\cos }^{-1}}(-1)-{{\sin }^{-1}}(1)\].
We know that the range of \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\].
We also know that \[cosy=\cos \left( {{\cos }^{-1}}x \right)=x\].
Let \[y={{\cos }^{-1}}(-1)\].
On taking cosine both the sides, we get as follows:
\[\begin{align}
& \cos y=\cos \left[ {{\cos }^{-1}}(-1) \right] \\
& \cos y=-1 \\
\end{align}\]
\[\Rightarrow y=\pi \] since \[\cos \pi =-1\].
Also, the value of \[\pi \] is in the range of \[{{\cos }^{-1}}x\].
Once again, the range of \[si{{n}^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
Also, we know that \[\sin y=\sin \left( {{\sin }^{-1}}x \right)=x\].
Let \[y={{\sin }^{-1}}1\].
On taking sin both the sides, we get as follows:
\[\begin{align}
& \sin y=\sin \left( {{\sin }^{-1}}1 \right) \\
& \Rightarrow \sin y=1 \\
\end{align}\]
\[\Rightarrow y=\dfrac{\pi }{2}\] since \[\sin \dfrac{\pi }{2}=1\].
Also, the value of \[\dfrac{\pi }{2}\] is in the range of \[{{\sin }^{-1}}x\].
Now substituting these values in the expression, we get as follows:
\[{{\cos }^{-1}}(-1)-{{\sin }^{-1}}(1)=\pi -\dfrac{\pi }{2}=\dfrac{2\pi -\pi }{2}=\dfrac{\pi }{2}\]
Therefore the correct answer is option B.
Note: Just check the value of the inverse function that it must lie in the range of that inverse function otherwise we use the transformation to get the value. Don’t make a mistake like \[{{\cos }^{-1}}(-1)=-\pi \] as it is a chance of doing it if you are in a hurry.
Complete step-by-step answer:
We have been given \[{{\cos }^{-1}}(-1)-{{\sin }^{-1}}(1)\].
We know that the range of \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\].
We also know that \[cosy=\cos \left( {{\cos }^{-1}}x \right)=x\].
Let \[y={{\cos }^{-1}}(-1)\].
On taking cosine both the sides, we get as follows:
\[\begin{align}
& \cos y=\cos \left[ {{\cos }^{-1}}(-1) \right] \\
& \cos y=-1 \\
\end{align}\]
\[\Rightarrow y=\pi \] since \[\cos \pi =-1\].
Also, the value of \[\pi \] is in the range of \[{{\cos }^{-1}}x\].
Once again, the range of \[si{{n}^{-1}}x\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].
Also, we know that \[\sin y=\sin \left( {{\sin }^{-1}}x \right)=x\].
Let \[y={{\sin }^{-1}}1\].
On taking sin both the sides, we get as follows:
\[\begin{align}
& \sin y=\sin \left( {{\sin }^{-1}}1 \right) \\
& \Rightarrow \sin y=1 \\
\end{align}\]
\[\Rightarrow y=\dfrac{\pi }{2}\] since \[\sin \dfrac{\pi }{2}=1\].
Also, the value of \[\dfrac{\pi }{2}\] is in the range of \[{{\sin }^{-1}}x\].
Now substituting these values in the expression, we get as follows:
\[{{\cos }^{-1}}(-1)-{{\sin }^{-1}}(1)=\pi -\dfrac{\pi }{2}=\dfrac{2\pi -\pi }{2}=\dfrac{\pi }{2}\]
Therefore the correct answer is option B.
Note: Just check the value of the inverse function that it must lie in the range of that inverse function otherwise we use the transformation to get the value. Don’t make a mistake like \[{{\cos }^{-1}}(-1)=-\pi \] as it is a chance of doing it if you are in a hurry.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

