
The value of $\alpha $ for which $4\alpha \int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx=5}$ , is.
Answer
588.3k+ views
Hint: Start by simplification of the definite integral using the property $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)dx}$ to write \[\int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx}=\int\limits_{-1}^{0}{{{e}^{-\alpha |x|}}dx}+\int\limits_{0}^{2}{{{e}^{-\alpha |x|}}dx}\] and use the fact that |x| opens with a positive sign in (0,2) and with negative sign in (-1,0). After simplification, use the formula $\int{{{e}^{kx}}}dx=\dfrac{{{e}^{kx}}}{k}+c$ .
Complete step-by-step answer:
Before starting the solution, let us discuss the important properties of definite integration.
Some important properties are:
$\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}$
$\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx+}\int\limits_{c}^{b}{f\left( x \right)dx}$
Now let us start with the integral given in the above question.
$4\alpha \int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx=5}$
Using the property $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)dx}$ , we get
\[4\alpha \int\limits_{-1}^{0}{{{e}^{-\alpha |x|}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha |x|}}dx=5}\]
Now if we use the fact that |x| opens with a positive sign in (0,2) and with negative sign in (-1,0), we get
\[4\alpha \int\limits_{-1}^{0}{{{e}^{-\alpha \left( -x \right)}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha x}}dx=5}\]
\[\Rightarrow 4\alpha \int\limits_{-1}^{0}{{{e}^{\alpha x}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha x}}dx=5}\]
Now, if we use the formula $\int{{{e}^{kx}}}dx=\dfrac{{{e}^{kx}}}{k}+c$ , we get
\[4\alpha \left. \dfrac{{{e}^{\alpha x}}}{\alpha } \right|_{-1}^{0}+4\alpha \left. \dfrac{{{e}^{-\alpha x}}}{-\alpha } \right|_{0}^{2}=5\]
\[\Rightarrow 4\alpha \left( \dfrac{{{e}^{0}}-{{e}^{-\alpha }}}{\alpha } \right)-4\alpha \left( \dfrac{{{e}^{-2\alpha }}-{{e}^{0}}}{\alpha } \right)=5\]
\[\Rightarrow 4{{e}^{0}}-4{{e}^{-\alpha }}+4{{e}^{0}}-4{{e}^{-2\alpha }}=5\]
Now, we know that ${{e}^{0}}=1$ .
\[4-4{{e}^{-\alpha }}+4-4{{e}^{-2\alpha }}=5\]
\[\Rightarrow -4{{e}^{-\alpha }}-4{{e}^{-2\alpha }}=-3\]
\[\Rightarrow 4{{e}^{-2\alpha }}+4{{e}^{-\alpha }}-3=0\]
\[\Rightarrow 4{{e}^{-2\alpha }}+6{{e}^{-\alpha }}-2{{e}^{-\alpha }}-3=0\]
\[\Rightarrow \left( 2{{e}^{-\alpha }}-1 \right)\left( 2{{e}^{-\alpha }}+3 \right)=0\]
So, either \[\left( 2{{e}^{-\alpha }}-1 \right)=0\] else \[\left( 2{{e}^{-\alpha }}+3 \right)=0\] . But \[\left( 2{{e}^{-\alpha }}+3 \right)\] cannot be zero as e to the power some constant can never be negative.
\[\therefore 2{{e}^{-\alpha }}-1=0\]
\[{{e}^{-\alpha }}=\dfrac{1}{2}\]
Now we will take log of both sides.
\[\begin{align}
& \log {{e}^{-\alpha }}=\log \dfrac{1}{2} \\
& \Rightarrow -\alpha \log e=\log \dfrac{1}{2} \\
\end{align}\]
We know that loge=1 and $-\log a=\log \dfrac{1}{a}$ .
\[\alpha =-\log \dfrac{1}{2}\]
\[\Rightarrow \alpha =\log 2\]
Therefore, the answer to the above question is \[\alpha =\log 2.\]
Note: In case of questions related to definite integral the use of the right properties is very important. Also, you need to remember all the basic formulas that we use for indefinite integrals as they are used in definite integrations as well. Also, the function |x| can be defined as:
$|x|=\left\{ \begin{align}
& -x\text{ , x0} \\
& x\text{ , x}\ge \text{0} \\
\end{align} \right.$ .
Complete step-by-step answer:
Before starting the solution, let us discuss the important properties of definite integration.
Some important properties are:
$\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}$
$\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx+}\int\limits_{c}^{b}{f\left( x \right)dx}$
Now let us start with the integral given in the above question.
$4\alpha \int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx=5}$
Using the property $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)dx}$ , we get
\[4\alpha \int\limits_{-1}^{0}{{{e}^{-\alpha |x|}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha |x|}}dx=5}\]
Now if we use the fact that |x| opens with a positive sign in (0,2) and with negative sign in (-1,0), we get
\[4\alpha \int\limits_{-1}^{0}{{{e}^{-\alpha \left( -x \right)}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha x}}dx=5}\]
\[\Rightarrow 4\alpha \int\limits_{-1}^{0}{{{e}^{\alpha x}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha x}}dx=5}\]
Now, if we use the formula $\int{{{e}^{kx}}}dx=\dfrac{{{e}^{kx}}}{k}+c$ , we get
\[4\alpha \left. \dfrac{{{e}^{\alpha x}}}{\alpha } \right|_{-1}^{0}+4\alpha \left. \dfrac{{{e}^{-\alpha x}}}{-\alpha } \right|_{0}^{2}=5\]
\[\Rightarrow 4\alpha \left( \dfrac{{{e}^{0}}-{{e}^{-\alpha }}}{\alpha } \right)-4\alpha \left( \dfrac{{{e}^{-2\alpha }}-{{e}^{0}}}{\alpha } \right)=5\]
\[\Rightarrow 4{{e}^{0}}-4{{e}^{-\alpha }}+4{{e}^{0}}-4{{e}^{-2\alpha }}=5\]
Now, we know that ${{e}^{0}}=1$ .
\[4-4{{e}^{-\alpha }}+4-4{{e}^{-2\alpha }}=5\]
\[\Rightarrow -4{{e}^{-\alpha }}-4{{e}^{-2\alpha }}=-3\]
\[\Rightarrow 4{{e}^{-2\alpha }}+4{{e}^{-\alpha }}-3=0\]
\[\Rightarrow 4{{e}^{-2\alpha }}+6{{e}^{-\alpha }}-2{{e}^{-\alpha }}-3=0\]
\[\Rightarrow \left( 2{{e}^{-\alpha }}-1 \right)\left( 2{{e}^{-\alpha }}+3 \right)=0\]
So, either \[\left( 2{{e}^{-\alpha }}-1 \right)=0\] else \[\left( 2{{e}^{-\alpha }}+3 \right)=0\] . But \[\left( 2{{e}^{-\alpha }}+3 \right)\] cannot be zero as e to the power some constant can never be negative.
\[\therefore 2{{e}^{-\alpha }}-1=0\]
\[{{e}^{-\alpha }}=\dfrac{1}{2}\]
Now we will take log of both sides.
\[\begin{align}
& \log {{e}^{-\alpha }}=\log \dfrac{1}{2} \\
& \Rightarrow -\alpha \log e=\log \dfrac{1}{2} \\
\end{align}\]
We know that loge=1 and $-\log a=\log \dfrac{1}{a}$ .
\[\alpha =-\log \dfrac{1}{2}\]
\[\Rightarrow \alpha =\log 2\]
Therefore, the answer to the above question is \[\alpha =\log 2.\]
Note: In case of questions related to definite integral the use of the right properties is very important. Also, you need to remember all the basic formulas that we use for indefinite integrals as they are used in definite integrations as well. Also, the function |x| can be defined as:
$|x|=\left\{ \begin{align}
& -x\text{ , x0} \\
& x\text{ , x}\ge \text{0} \\
\end{align} \right.$ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

