
The value of $\alpha $ for which $4\alpha \int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx=5}$ , is.
Answer
602.1k+ views
Hint: Start by simplification of the definite integral using the property $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)dx}$ to write \[\int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx}=\int\limits_{-1}^{0}{{{e}^{-\alpha |x|}}dx}+\int\limits_{0}^{2}{{{e}^{-\alpha |x|}}dx}\] and use the fact that |x| opens with a positive sign in (0,2) and with negative sign in (-1,0). After simplification, use the formula $\int{{{e}^{kx}}}dx=\dfrac{{{e}^{kx}}}{k}+c$ .
Complete step-by-step answer:
Before starting the solution, let us discuss the important properties of definite integration.
Some important properties are:
$\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}$
$\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx+}\int\limits_{c}^{b}{f\left( x \right)dx}$
Now let us start with the integral given in the above question.
$4\alpha \int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx=5}$
Using the property $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)dx}$ , we get
\[4\alpha \int\limits_{-1}^{0}{{{e}^{-\alpha |x|}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha |x|}}dx=5}\]
Now if we use the fact that |x| opens with a positive sign in (0,2) and with negative sign in (-1,0), we get
\[4\alpha \int\limits_{-1}^{0}{{{e}^{-\alpha \left( -x \right)}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha x}}dx=5}\]
\[\Rightarrow 4\alpha \int\limits_{-1}^{0}{{{e}^{\alpha x}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha x}}dx=5}\]
Now, if we use the formula $\int{{{e}^{kx}}}dx=\dfrac{{{e}^{kx}}}{k}+c$ , we get
\[4\alpha \left. \dfrac{{{e}^{\alpha x}}}{\alpha } \right|_{-1}^{0}+4\alpha \left. \dfrac{{{e}^{-\alpha x}}}{-\alpha } \right|_{0}^{2}=5\]
\[\Rightarrow 4\alpha \left( \dfrac{{{e}^{0}}-{{e}^{-\alpha }}}{\alpha } \right)-4\alpha \left( \dfrac{{{e}^{-2\alpha }}-{{e}^{0}}}{\alpha } \right)=5\]
\[\Rightarrow 4{{e}^{0}}-4{{e}^{-\alpha }}+4{{e}^{0}}-4{{e}^{-2\alpha }}=5\]
Now, we know that ${{e}^{0}}=1$ .
\[4-4{{e}^{-\alpha }}+4-4{{e}^{-2\alpha }}=5\]
\[\Rightarrow -4{{e}^{-\alpha }}-4{{e}^{-2\alpha }}=-3\]
\[\Rightarrow 4{{e}^{-2\alpha }}+4{{e}^{-\alpha }}-3=0\]
\[\Rightarrow 4{{e}^{-2\alpha }}+6{{e}^{-\alpha }}-2{{e}^{-\alpha }}-3=0\]
\[\Rightarrow \left( 2{{e}^{-\alpha }}-1 \right)\left( 2{{e}^{-\alpha }}+3 \right)=0\]
So, either \[\left( 2{{e}^{-\alpha }}-1 \right)=0\] else \[\left( 2{{e}^{-\alpha }}+3 \right)=0\] . But \[\left( 2{{e}^{-\alpha }}+3 \right)\] cannot be zero as e to the power some constant can never be negative.
\[\therefore 2{{e}^{-\alpha }}-1=0\]
\[{{e}^{-\alpha }}=\dfrac{1}{2}\]
Now we will take log of both sides.
\[\begin{align}
& \log {{e}^{-\alpha }}=\log \dfrac{1}{2} \\
& \Rightarrow -\alpha \log e=\log \dfrac{1}{2} \\
\end{align}\]
We know that loge=1 and $-\log a=\log \dfrac{1}{a}$ .
\[\alpha =-\log \dfrac{1}{2}\]
\[\Rightarrow \alpha =\log 2\]
Therefore, the answer to the above question is \[\alpha =\log 2.\]
Note: In case of questions related to definite integral the use of the right properties is very important. Also, you need to remember all the basic formulas that we use for indefinite integrals as they are used in definite integrations as well. Also, the function |x| can be defined as:
$|x|=\left\{ \begin{align}
& -x\text{ , x0} \\
& x\text{ , x}\ge \text{0} \\
\end{align} \right.$ .
Complete step-by-step answer:
Before starting the solution, let us discuss the important properties of definite integration.
Some important properties are:
$\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{b}{f\left( a+b-x \right)dx}$
$\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx+}\int\limits_{c}^{b}{f\left( x \right)dx}$
Now let us start with the integral given in the above question.
$4\alpha \int\limits_{-1}^{2}{{{e}^{-\alpha |x|}}dx=5}$
Using the property $\int\limits_{a}^{b}{f\left( x \right)dx}=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)dx}$ , we get
\[4\alpha \int\limits_{-1}^{0}{{{e}^{-\alpha |x|}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha |x|}}dx=5}\]
Now if we use the fact that |x| opens with a positive sign in (0,2) and with negative sign in (-1,0), we get
\[4\alpha \int\limits_{-1}^{0}{{{e}^{-\alpha \left( -x \right)}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha x}}dx=5}\]
\[\Rightarrow 4\alpha \int\limits_{-1}^{0}{{{e}^{\alpha x}}dx}+4\alpha \int\limits_{0}^{2}{{{e}^{-\alpha x}}dx=5}\]
Now, if we use the formula $\int{{{e}^{kx}}}dx=\dfrac{{{e}^{kx}}}{k}+c$ , we get
\[4\alpha \left. \dfrac{{{e}^{\alpha x}}}{\alpha } \right|_{-1}^{0}+4\alpha \left. \dfrac{{{e}^{-\alpha x}}}{-\alpha } \right|_{0}^{2}=5\]
\[\Rightarrow 4\alpha \left( \dfrac{{{e}^{0}}-{{e}^{-\alpha }}}{\alpha } \right)-4\alpha \left( \dfrac{{{e}^{-2\alpha }}-{{e}^{0}}}{\alpha } \right)=5\]
\[\Rightarrow 4{{e}^{0}}-4{{e}^{-\alpha }}+4{{e}^{0}}-4{{e}^{-2\alpha }}=5\]
Now, we know that ${{e}^{0}}=1$ .
\[4-4{{e}^{-\alpha }}+4-4{{e}^{-2\alpha }}=5\]
\[\Rightarrow -4{{e}^{-\alpha }}-4{{e}^{-2\alpha }}=-3\]
\[\Rightarrow 4{{e}^{-2\alpha }}+4{{e}^{-\alpha }}-3=0\]
\[\Rightarrow 4{{e}^{-2\alpha }}+6{{e}^{-\alpha }}-2{{e}^{-\alpha }}-3=0\]
\[\Rightarrow \left( 2{{e}^{-\alpha }}-1 \right)\left( 2{{e}^{-\alpha }}+3 \right)=0\]
So, either \[\left( 2{{e}^{-\alpha }}-1 \right)=0\] else \[\left( 2{{e}^{-\alpha }}+3 \right)=0\] . But \[\left( 2{{e}^{-\alpha }}+3 \right)\] cannot be zero as e to the power some constant can never be negative.
\[\therefore 2{{e}^{-\alpha }}-1=0\]
\[{{e}^{-\alpha }}=\dfrac{1}{2}\]
Now we will take log of both sides.
\[\begin{align}
& \log {{e}^{-\alpha }}=\log \dfrac{1}{2} \\
& \Rightarrow -\alpha \log e=\log \dfrac{1}{2} \\
\end{align}\]
We know that loge=1 and $-\log a=\log \dfrac{1}{a}$ .
\[\alpha =-\log \dfrac{1}{2}\]
\[\Rightarrow \alpha =\log 2\]
Therefore, the answer to the above question is \[\alpha =\log 2.\]
Note: In case of questions related to definite integral the use of the right properties is very important. Also, you need to remember all the basic formulas that we use for indefinite integrals as they are used in definite integrations as well. Also, the function |x| can be defined as:
$|x|=\left\{ \begin{align}
& -x\text{ , x0} \\
& x\text{ , x}\ge \text{0} \\
\end{align} \right.$ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

