
The value of \[8184\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right]\] is equal to.
Answer
587.1k+ views
Hint: Start with the first bracket, apply the property \[2\sin A\sin B = \cos \left( {A - B} \right)-\cos \left( {A + B} \right)\] in the first two terms. After this, apply the property \[\tan A + \tan B = \tan \left( {A + B} \right)\left( {1 - \tan A\tan B} \right)\] in the first two terms of the second bracket. Simplify by putting the trigonometric values.
Complete step-by-step answer:
Consider the given expression,
\[8184\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right]\]
We will first simplify the first bracket by using the trigonometric identity \[2\sin A\sin B = \cos \left( {A - B} \right)\cos \left( {A + B} \right)\] on the first two terms.
Thus, we get,
\[
\Rightarrow 2 \times 4092\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\left( {2\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {48^\circ - 12^\circ } \right) - \cos \left( {48^\circ + 12^\circ } \right)} \right]\sin 54^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\sin 54^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\]
Now, we know that \[\sin \left( {90^\circ - 54^\circ } \right) = \cos 36^\circ \]
We will put this value in the above obtained expression,
Thus, we get,
\[ \Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right]\]
Next, we will simplify the second bracket by using the trigonometric identity \[\tan A + \tan B = \tan \left( {A + B} \right)\left( {1 - \tan A\tan B} \right)\] on the first two terms,
Thus, we have,
\[
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan \left( {203^\circ + 22^\circ } \right)\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan \left( {225^\circ } \right)\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\
\]
Since, we know that \[\tan \left( {225^\circ } \right) = 1\] and \[\cos \left( {60^\circ } \right) = \dfrac{1}{2}\]
Hence, put the values in the derived form,
Thus, we get,
\[
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ {1\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ {1 - \tan 203^\circ \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ 1 \right] \\
\]
Since, we know that \[\cos \left( {36^\circ } \right) = \dfrac{{\sqrt 5 + 1}}{4}\],
Therefore, substitute the value in the obtained above expression,
We get,
\[
\Rightarrow 4092\left[ {\dfrac{{\sqrt 5 + 1}}{4} - \dfrac{1}{2}} \right]\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right) + 181 \\
\Rightarrow 4092\left[ {{{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2} - \dfrac{1}{2}\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)} \right] + 181 \\
\Rightarrow 4092\left[ {\dfrac{1}{{16}}\left( {1 + 5 + 2\sqrt 5 } \right) - \dfrac{1}{8}\left( {1 + \sqrt 5 } \right)} \right] + 181 \\
\Rightarrow \dfrac{{4092}}{{16}}\left[ {\left( {6 + 2\sqrt 5 } \right) - 2 - 2\sqrt 5 } \right] + 181 \\
\Rightarrow 1023 + 181 \\
\Rightarrow 1204 \\
\]
Hence, the value of the given expression is equal to 1204.
Note: We can find the value of \[\cos \left( {36^\circ } \right)\] by deriving its value in rough or we can remember the value also. The trigonometric identities \[2\sin A\sin B = \cos \left( {A - B} \right)\cos \left( {A + B} \right)\] and \[\tan A + \tan B = \tan \left( {A + B} \right)\left( {1 - \tan A\tan B} \right)\] should be used to simplify the given expression.
Complete step-by-step answer:
Consider the given expression,
\[8184\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right]\]
We will first simplify the first bracket by using the trigonometric identity \[2\sin A\sin B = \cos \left( {A - B} \right)\cos \left( {A + B} \right)\] on the first two terms.
Thus, we get,
\[
\Rightarrow 2 \times 4092\left[ {\sin 12^\circ \sin 48^\circ \sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\left( {2\sin 48^\circ \sin 12^\circ } \right)\sin 54^\circ } \right] + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {48^\circ - 12^\circ } \right) - \cos \left( {48^\circ + 12^\circ } \right)} \right]\sin 54^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\sin 54^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\]
Now, we know that \[\sin \left( {90^\circ - 54^\circ } \right) = \cos 36^\circ \]
We will put this value in the above obtained expression,
Thus, we get,
\[ \Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan 203^\circ + \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right]\]
Next, we will simplify the second bracket by using the trigonometric identity \[\tan A + \tan B = \tan \left( {A + B} \right)\left( {1 - \tan A\tan B} \right)\] on the first two terms,
Thus, we have,
\[
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan \left( {203^\circ + 22^\circ } \right)\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \cos \left( {60^\circ } \right)} \right]\cos 36^\circ + 181\left[ {\tan \left( {225^\circ } \right)\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\
\]
Since, we know that \[\tan \left( {225^\circ } \right) = 1\] and \[\cos \left( {60^\circ } \right) = \dfrac{1}{2}\]
Hence, put the values in the derived form,
Thus, we get,
\[
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ {1\left( {1 - \tan 203^\circ \tan 22^\circ } \right) + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ {1 - \tan 203^\circ \tan 22^\circ + \tan 203^\circ \tan 22^\circ } \right] \\
\Rightarrow 4092\left[ {\cos \left( {36^\circ } \right) - \dfrac{1}{2}} \right]\cos 36^\circ + 181\left[ 1 \right] \\
\]
Since, we know that \[\cos \left( {36^\circ } \right) = \dfrac{{\sqrt 5 + 1}}{4}\],
Therefore, substitute the value in the obtained above expression,
We get,
\[
\Rightarrow 4092\left[ {\dfrac{{\sqrt 5 + 1}}{4} - \dfrac{1}{2}} \right]\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right) + 181 \\
\Rightarrow 4092\left[ {{{\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)}^2} - \dfrac{1}{2}\left( {\dfrac{{\sqrt 5 + 1}}{4}} \right)} \right] + 181 \\
\Rightarrow 4092\left[ {\dfrac{1}{{16}}\left( {1 + 5 + 2\sqrt 5 } \right) - \dfrac{1}{8}\left( {1 + \sqrt 5 } \right)} \right] + 181 \\
\Rightarrow \dfrac{{4092}}{{16}}\left[ {\left( {6 + 2\sqrt 5 } \right) - 2 - 2\sqrt 5 } \right] + 181 \\
\Rightarrow 1023 + 181 \\
\Rightarrow 1204 \\
\]
Hence, the value of the given expression is equal to 1204.
Note: We can find the value of \[\cos \left( {36^\circ } \right)\] by deriving its value in rough or we can remember the value also. The trigonometric identities \[2\sin A\sin B = \cos \left( {A - B} \right)\cos \left( {A + B} \right)\] and \[\tan A + \tan B = \tan \left( {A + B} \right)\left( {1 - \tan A\tan B} \right)\] should be used to simplify the given expression.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

