
What will be the value of $6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } } \right)$?
$
(a){\text{ 4}} \\
(b){\text{ 5}} \\
(c){\text{ 6}} \\
(d){\text{ 9}} \\
$
Answer
614.1k+ views
Hint – In this question assume that $y = \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } $, and then again we can see that the expression can be simplified $y = \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - y} $. Solve this to find the value of y and use them along with basic logarithmic identities to get the answer.
Complete step-by-step solution -
Given equation is
$6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } } \right)$............................. (1)
Let $y = \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } $
As this is infinite going series so this series is also written as
$ \Rightarrow y = \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - y} $
$ \Rightarrow 3\sqrt 2 y = \sqrt {4 - y} $
Now squaring on both sides we have,
$ \Rightarrow 18{y^2} = 4 - y$
$ \Rightarrow 18{y^2} + y - 4 = 0$
Now this is a quadratic equation so apply quadratic formula which is
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ Where (a = 18, b = 1 and c = -4).
$ \Rightarrow y = \dfrac{{ - 1 \pm \sqrt {{1^2} - 4\left( {18} \right)\left( { - 4} \right)} }}{{2\left( {18} \right)}} = \dfrac{{ - 1 \pm \sqrt {1 + 288} }}{{36}} = \dfrac{{ - 1 \pm \sqrt {289} }}{{36}} = \dfrac{{ - 1 \pm 17}}{{36}}$
$y = \dfrac{{ - 18}}{{36}},\dfrac{{16}}{{36}}$
$ \Rightarrow y = \dfrac{{ - 1}}{2},\dfrac{4}{9}$
So from equation (1) we have,
$ \Rightarrow 6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } } \right) = 6 + {\log _{\dfrac{3}{2}}}\left( y \right)$
So as we see y cannot be negative because negative log is undefined.
Therefore possible case is y = (4/9)
$ \Rightarrow 6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } } \right) = 6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{4}{9}} \right)$
Now as we know ${\log _a}b = \dfrac{{\log b}}{{\log a}},\log {k^2} = 2\log k{\text{ and }}\log \dfrac{c}{d} = - \log \dfrac{d}{c}$ so use this property in above equation we have,
\[ \Rightarrow 6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{4}{9}} \right) = 6 + \dfrac{{\log {{\left( {\dfrac{2}{3}} \right)}^2}}}{{\log \dfrac{3}{2}}} = 6 + \dfrac{{2\log \dfrac{2}{3}}}{{ - \log \dfrac{2}{3}}} = 6 - 2 = 4\]
So this is the required answer.
Hence option (A) is correct.
Note – Such type of questions are always pattern based, there is indulgence of one pattern than keeps on repeating inside itself. So the basic approach to all such problems is simply to assume the basic repeating pattern as a variable. Basic logarithmic identities like ${\log _a}b = \dfrac{{\log b}}{{\log a}},\log {k^2} = 2\log k{\text{ and }}\log \dfrac{c}{d} = - \log \dfrac{d}{c}$ are advised to be remembered as it helps solving problems of this kind.
Complete step-by-step solution -
Given equation is
$6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } } \right)$............................. (1)
Let $y = \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } $
As this is infinite going series so this series is also written as
$ \Rightarrow y = \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - y} $
$ \Rightarrow 3\sqrt 2 y = \sqrt {4 - y} $
Now squaring on both sides we have,
$ \Rightarrow 18{y^2} = 4 - y$
$ \Rightarrow 18{y^2} + y - 4 = 0$
Now this is a quadratic equation so apply quadratic formula which is
$y = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ Where (a = 18, b = 1 and c = -4).
$ \Rightarrow y = \dfrac{{ - 1 \pm \sqrt {{1^2} - 4\left( {18} \right)\left( { - 4} \right)} }}{{2\left( {18} \right)}} = \dfrac{{ - 1 \pm \sqrt {1 + 288} }}{{36}} = \dfrac{{ - 1 \pm \sqrt {289} }}{{36}} = \dfrac{{ - 1 \pm 17}}{{36}}$
$y = \dfrac{{ - 18}}{{36}},\dfrac{{16}}{{36}}$
$ \Rightarrow y = \dfrac{{ - 1}}{2},\dfrac{4}{9}$
So from equation (1) we have,
$ \Rightarrow 6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } } \right) = 6 + {\log _{\dfrac{3}{2}}}\left( y \right)$
So as we see y cannot be negative because negative log is undefined.
Therefore possible case is y = (4/9)
$ \Rightarrow 6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}\sqrt {4 - \dfrac{1}{{3\sqrt 2 }}.....} } } } \right) = 6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{4}{9}} \right)$
Now as we know ${\log _a}b = \dfrac{{\log b}}{{\log a}},\log {k^2} = 2\log k{\text{ and }}\log \dfrac{c}{d} = - \log \dfrac{d}{c}$ so use this property in above equation we have,
\[ \Rightarrow 6 + {\log _{\dfrac{3}{2}}}\left( {\dfrac{4}{9}} \right) = 6 + \dfrac{{\log {{\left( {\dfrac{2}{3}} \right)}^2}}}{{\log \dfrac{3}{2}}} = 6 + \dfrac{{2\log \dfrac{2}{3}}}{{ - \log \dfrac{2}{3}}} = 6 - 2 = 4\]
So this is the required answer.
Hence option (A) is correct.
Note – Such type of questions are always pattern based, there is indulgence of one pattern than keeps on repeating inside itself. So the basic approach to all such problems is simply to assume the basic repeating pattern as a variable. Basic logarithmic identities like ${\log _a}b = \dfrac{{\log b}}{{\log a}},\log {k^2} = 2\log k{\text{ and }}\log \dfrac{c}{d} = - \log \dfrac{d}{c}$ are advised to be remembered as it helps solving problems of this kind.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

