
The value of $4{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{{239}}} \right) = $
$\left( 1 \right)\pi $
$\left( 2 \right)\dfrac{\pi }{2}$
$\left( 3 \right)\dfrac{\pi }{3}$
$\left( 4 \right)\dfrac{\pi }{4}$
Answer
489.6k+ views
Hint: This question requires the knowledge of standard trigonometric formulae and basic algebraic identities. Here, the tangent function is given so the standard identities for tangent function are very helpful while solving the given question. Some of the important formulae are: $\left( 1 \right)$ Quotient identity: $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ . $\left( 2 \right)$ Reciprocal identity: $\tan \theta = \dfrac{1}{{\cot \theta }}$ . $\left( 3 \right)$ Pythagoras identity: $1 + {\tan ^2}\theta = {\sec ^2}\theta $ . $\left( 4 \right)$ Sum identity: $\tan \left( {a + b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}$ . $\left( 5 \right)$ Difference identity: $\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}$ . $\left( 6 \right)$ Double angle formula: $\tan 2a = \dfrac{{2\tan a}}{{1 - {{\tan }^2}a}}$ . $\left( 7 \right)$ Half angle formulae : $\tan \left( {\dfrac{\theta }{2}} \right) = \dfrac{{1 - \cos \theta }}{{\sin \theta }}{\text{ or }}\dfrac{{\sin \theta }}{{1 + \cos \theta }}{\text{ or }} \pm \sqrt {\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}} $ .
Complete step by step answer:
The given expression is ; $4{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{{239}}} \right)$
It can also be written as;
$ = 2\left\{ {2{{\tan }^{ - 1}}\dfrac{1}{5}} \right\} - {\tan ^{ - 1}}\dfrac{1}{{239}}$
For simplification;
$\left( {\because 2{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right) = {{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right)} \right)$
Hence the above expression can be written as ;
$ = 2\left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right)} \right] - {\tan ^{ - 1}}\dfrac{1}{{239}}$
By the standard formula for tangent function, we know that;
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\dfrac{{x + y}}{{1 - xy}}} \right]$
Applying the above formula, we get;
$ = 2{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{5} + \dfrac{1}{5}}}{{1 - \left( {\dfrac{1}{5} \times \dfrac{1}{5}} \right)}}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}$
Simplifying the above expression;
$ = 2{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{5}}}{{1 - \dfrac{1}{{25}}}}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}$
We know that an expression, $\because \dfrac{{\dfrac{a}{b}}}{{\dfrac{c}{d}}} = \dfrac{a}{b} \times \dfrac{d}{c}$
Using the same logic mentioned above, we get;
$ = 2{\tan ^{ - 1}}\left( {\dfrac{2}{5} \times \dfrac{{25}}{{24}}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}$
$ = 2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}{\text{ }}......\left( 1 \right)$
By standard trigonometric identity for tangent function, we know that;
$ \Rightarrow 2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$
Expanding the first term of the equation $\left( 1 \right)$ i.e. $2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right)$ according to the above formula;
$ \Rightarrow 2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{2 \times \dfrac{5}{{12}}}}{{1 - {{\left( {\dfrac{5}{{12}}} \right)}^2}}}} \right)$
$ \Rightarrow 2{\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{5}{6}}}{{\dfrac{{119}}{{144}}}}} \right] = {\tan ^{ - 1}}\left( {\dfrac{5}{6} \times \dfrac{{144}}{{119}}} \right)$
$ \Rightarrow 2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{120}}{{119}}} \right)$
Now, put the value of $2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right)$ in equation $\left( 1 \right)$ ;
$ = {\tan ^{ - 1}}\left( {\dfrac{{120}}{{119}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{{239}}} \right){\text{ }}......\left( 2 \right)$
We know that;
$ = {\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\dfrac{{x - y}}{{1 + xy}}} \right]$
Applying the above formula to equation $\left( 2 \right)$ ;
$ = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{120}}{{119}} - \dfrac{1}{{239}}}}{{1 + \left( {\dfrac{{120}}{{119}}} \right)\left( {\dfrac{1}{{239}}} \right)}}} \right)$
Simplifying the above expression, we get ;
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{28680 - 119}}{{28441}}}}{{\dfrac{{28441 + 120}}{{28441}}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{28561}}{{28441}} \times \dfrac{{28441}}{{28561}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( 1 \right) = {\tan ^{ - 1}}\tan \left( {\dfrac{\pi }{4}} \right)$ $\left( {\because \tan \dfrac{\pi }{4} = 1} \right)$
By the identity ;
$\because {\tan ^{ - 1}}\tan \left( x \right) = x$
Therefore, ${\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4}$
Therefore, the value of $4{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{{239}}} \right)$ is $\dfrac{\pi }{4}$ .
So, the correct answer is “Option 4”.
Note:
The values of tangent function for different angles are listed here: $\left( 1 \right)\tan {0^0} = 0$ . $\left( 2 \right)\tan \left( {\dfrac{\pi }{6}} \right){\text{ or tan}}\left( {{{30}^0}} \right) = \dfrac{1}{{\sqrt 3 }}$ . $\left( 3 \right)\tan \left( {\dfrac{\pi }{4}} \right){\text{ or }}\tan \left( {{{45}^0}} \right) = 1$ . $\left( 4 \right)\tan \left( {\dfrac{\pi }{3}} \right){\text{ or tan}}\left( {{{60}^0}} \right) = \sqrt 3 $ . $\left( 5 \right)\tan \left( {\dfrac{\pi }{2}} \right){\text{ or tan}}\left( {{{90}^0}} \right) = \infty $ . Like the sine function, the tangent function is also an odd function meaning $\tan \left( { - \theta } \right) = - \tan \theta $ . An odd function is symmetric about the y-axis , i.e. $f\left( { - x} \right) = - f\left( x \right)$ . Unlike sine and tangent function, cosine is an even function i.e. $\cos \left( { - \theta } \right) = \cos \theta $ , an even function is symmetric about the x-axis i.e. $f\left( { - x} \right) = f\left( x \right)$ .
Complete step by step answer:
The given expression is ; $4{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{{239}}} \right)$
It can also be written as;
$ = 2\left\{ {2{{\tan }^{ - 1}}\dfrac{1}{5}} \right\} - {\tan ^{ - 1}}\dfrac{1}{{239}}$
For simplification;
$\left( {\because 2{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right) = {{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right)} \right)$
Hence the above expression can be written as ;
$ = 2\left[ {{{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right) + {{\tan }^{ - 1}}\left( {\dfrac{1}{5}} \right)} \right] - {\tan ^{ - 1}}\dfrac{1}{{239}}$
By the standard formula for tangent function, we know that;
$ \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\dfrac{{x + y}}{{1 - xy}}} \right]$
Applying the above formula, we get;
$ = 2{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{1}{5} + \dfrac{1}{5}}}{{1 - \left( {\dfrac{1}{5} \times \dfrac{1}{5}} \right)}}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}$
Simplifying the above expression;
$ = 2{\tan ^{ - 1}}\left( {\dfrac{{\dfrac{2}{5}}}{{1 - \dfrac{1}{{25}}}}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}$
We know that an expression, $\because \dfrac{{\dfrac{a}{b}}}{{\dfrac{c}{d}}} = \dfrac{a}{b} \times \dfrac{d}{c}$
Using the same logic mentioned above, we get;
$ = 2{\tan ^{ - 1}}\left( {\dfrac{2}{5} \times \dfrac{{25}}{{24}}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}$
$ = 2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) - {\tan ^{ - 1}}\dfrac{1}{{239}}{\text{ }}......\left( 1 \right)$
By standard trigonometric identity for tangent function, we know that;
$ \Rightarrow 2{\tan ^{ - 1}}x = {\tan ^{ - 1}}\dfrac{{2x}}{{1 - {x^2}}}$
Expanding the first term of the equation $\left( 1 \right)$ i.e. $2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right)$ according to the above formula;
$ \Rightarrow 2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{2 \times \dfrac{5}{{12}}}}{{1 - {{\left( {\dfrac{5}{{12}}} \right)}^2}}}} \right)$
$ \Rightarrow 2{\tan ^{ - 1}}\left[ {\dfrac{{\dfrac{5}{6}}}{{\dfrac{{119}}{{144}}}}} \right] = {\tan ^{ - 1}}\left( {\dfrac{5}{6} \times \dfrac{{144}}{{119}}} \right)$
$ \Rightarrow 2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{120}}{{119}}} \right)$
Now, put the value of $2{\tan ^{ - 1}}\left( {\dfrac{5}{{12}}} \right)$ in equation $\left( 1 \right)$ ;
$ = {\tan ^{ - 1}}\left( {\dfrac{{120}}{{119}}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{{239}}} \right){\text{ }}......\left( 2 \right)$
We know that;
$ = {\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\dfrac{{x - y}}{{1 + xy}}} \right]$
Applying the above formula to equation $\left( 2 \right)$ ;
$ = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{120}}{{119}} - \dfrac{1}{{239}}}}{{1 + \left( {\dfrac{{120}}{{119}}} \right)\left( {\dfrac{1}{{239}}} \right)}}} \right)$
Simplifying the above expression, we get ;
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{28680 - 119}}{{28441}}}}{{\dfrac{{28441 + 120}}{{28441}}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{28561}}{{28441}} \times \dfrac{{28441}}{{28561}}} \right)$
$ \Rightarrow {\tan ^{ - 1}}\left( 1 \right) = {\tan ^{ - 1}}\tan \left( {\dfrac{\pi }{4}} \right)$ $\left( {\because \tan \dfrac{\pi }{4} = 1} \right)$
By the identity ;
$\because {\tan ^{ - 1}}\tan \left( x \right) = x$
Therefore, ${\tan ^{ - 1}}\left( 1 \right) = \dfrac{\pi }{4}$
Therefore, the value of $4{\tan ^{ - 1}}\left( {\dfrac{1}{5}} \right) - {\tan ^{ - 1}}\left( {\dfrac{1}{{239}}} \right)$ is $\dfrac{\pi }{4}$ .
So, the correct answer is “Option 4”.
Note:
The values of tangent function for different angles are listed here: $\left( 1 \right)\tan {0^0} = 0$ . $\left( 2 \right)\tan \left( {\dfrac{\pi }{6}} \right){\text{ or tan}}\left( {{{30}^0}} \right) = \dfrac{1}{{\sqrt 3 }}$ . $\left( 3 \right)\tan \left( {\dfrac{\pi }{4}} \right){\text{ or }}\tan \left( {{{45}^0}} \right) = 1$ . $\left( 4 \right)\tan \left( {\dfrac{\pi }{3}} \right){\text{ or tan}}\left( {{{60}^0}} \right) = \sqrt 3 $ . $\left( 5 \right)\tan \left( {\dfrac{\pi }{2}} \right){\text{ or tan}}\left( {{{90}^0}} \right) = \infty $ . Like the sine function, the tangent function is also an odd function meaning $\tan \left( { - \theta } \right) = - \tan \theta $ . An odd function is symmetric about the y-axis , i.e. $f\left( { - x} \right) = - f\left( x \right)$ . Unlike sine and tangent function, cosine is an even function i.e. $\cos \left( { - \theta } \right) = \cos \theta $ , an even function is symmetric about the x-axis i.e. $f\left( { - x} \right) = f\left( x \right)$ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

