
The value of \[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\] is
(A) \[^{30}{C_{10}}\]
(B) \[^{30}{C_{15}}\]
(C) \[^{30}{C_{13}}\]
(D) \[^{60}{C_{30}}\]
Answer
554.7k+ views
Hint: Here we will apply the Binomial Expansion to solve the given problem. A combination is the number of ways we can combine things, when the order does not matter.
The binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial \[{(x + y)^n}\].
Formula used: Combination rule: \[^n{C_r}{ = ^n}{C_{n - r}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Putting \[x = 1,y = x\], we get,
\[{(1 + x)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_{n - 1}}{x^{n - 1}}{ + ^n}{C_n}{x^n}\]
Putting \[x = 1,y = - x\], we get,
\[{(1 - x)^n}{ = ^n}{C_0}{ + ^n}{C_1}{\left( { - x} \right)^1}{ + ^n}{C_2}{\left( { - x} \right)^2} + ......{ + ^n}{C_{n - 1}}{\left( { - x} \right)^{n - 1}}{ + ^n}{C_n}{\left( { - x} \right)^n}\]
Solving, \[{(1 - x)^n}{ = ^n}{C_0}{ - ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{n - 1}}^n{C_{n - 1}}{x^{n - 1}} + {\left( { - 1} \right)^n}^n{C_n}{x^n}\]
Complete step-by-step answer:
We need to find out the value of \[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\].
Now we can use the binomial expansion putting \[x = 1,y = x,n = 30\] we get,
\[ \Rightarrow {(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}\]
Solving we get,
\[ \Rightarrow {(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}} \ldots \ldots \ldots \left( i \right)\]
Again, we can use the binomial expansion putting \[x = 1,y = - x,n = 30\]we get,
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0} + \left( { - 1} \right){ \times ^{30}}{C_1}{x^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{30 - 1}}{ \times ^{30}}{C_{30 - 1}}{x^{30 - 1}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{x^{30}}\]Solving we get,
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0} + \left( { - 1} \right){ \times ^{30}}{C_1}{x^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{29}}{ \times ^{30}}{C_{29}}{x^{29}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{x^{30}}\]
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}} \ldots \ldots ..\left( {ii} \right)\]
Now multiplying (i) and (ii) we get,
\[
\Rightarrow {(1 + x)^{30}} \times {(1 - x)^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
\[
\Rightarrow {\left\{ {(1 + x)(1 - x)} \right\}^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
Solving the L.H.S we get,
\[ \Rightarrow {\left\{ {(1 + x)(1 - x)} \right\}^{30}} = {(1 - {x^2})^{30}}\]
Hence, we have to calculate the multiplication for the RHS,
\[
\Rightarrow {(1 - {x^2})^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \ldots \ldots \left( {iii} \right) \\
\]
By applying Binomial expansion in the L.H.S, that is substituting the $x$ as ${x^2}$ in binomial expansion of \[{(1 - x)^{30}}\] we get,
\[
\Rightarrow {(1 - {x^2})^{30}} \\
{ = ^{30}}{C_0} + {\left( { - 1} \right)^1}{ \times ^{30}}{C_1}{\left( {{x^2}} \right)^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{\left( {{x^2}} \right)^2} + ....... + {\left( { - 1} \right)^{10}}{ \times ^{30}}{C_{10}}{\left( {{x^2}} \right)^{10}} + .... + {\left( { - 1} \right)^{30 - 1}}{ \times ^{30}}{C_{30 - 1}}{\left( {{x^2}} \right)^{30 - 1}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{\left( {{x^2}} \right)^{30}} \\
\]
Simplifying (add and subtract the terms in power) we get,
\[ \Rightarrow {(1 - {x^2})^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{\left( {{x^2}} \right)^{10}} - .....{ - ^{30}}{C_{29}}{\left( {{x^2}} \right)^{29}}{ + ^{30}}{C_{30}}{\left( {{x^2}} \right)^{30}}\]
Multiplying the power values to simplify,
\[ \Rightarrow {(1 - {x^2})^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{x^{20}} - .....{ - ^{30}}{C_{29}}{x^{58}}{ + ^{30}}{C_{30}}{x^{60}}\]
Putting the above expression of L.H.S in (iii), we get,
\[
{ \Rightarrow ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{x^{20}} - .....{ - ^{30}}{C_{29}}{x^{58}}{ + ^{30}}{C_{30}}{x^{60}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
Now, we need to find out the value of
\[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\]
We can write it as,
\[{ \Rightarrow ^{30}}{C_0}^{30}{C_{20}}{ - ^{30}}{C_1}^{30}{C_{19}}{ + ^{30}}{C_2}^{30}{C_{18}} - .......{ + ^{30}}{C_{10}}^{30}{C_{10}}\]
Since we know from combination rule,
\[{ \Rightarrow ^n}{C_r}{ = ^n}{C_{n - r}}\]
Comparing the coefficient of \[{x^{20}}\] from both sides we get,
\[{\therefore ^{30}}{C_{10}}{ = ^{30}}{C_0}{ \times ^{30}}{C_{20}}{ - ^{30}}{C_1}{ \times ^{30}}{C_{19}}{ + ^{30}}{C_2}^{30}{C_{18}} - .......{ + ^{30}}{C_{10}}^{30}{C_{10}}\]
Hence (A) is the correct option.
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
The binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial \[{(x + y)^n}\].
Formula used: Combination rule: \[^n{C_r}{ = ^n}{C_{n - r}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Putting \[x = 1,y = x\], we get,
\[{(1 + x)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_{n - 1}}{x^{n - 1}}{ + ^n}{C_n}{x^n}\]
Putting \[x = 1,y = - x\], we get,
\[{(1 - x)^n}{ = ^n}{C_0}{ + ^n}{C_1}{\left( { - x} \right)^1}{ + ^n}{C_2}{\left( { - x} \right)^2} + ......{ + ^n}{C_{n - 1}}{\left( { - x} \right)^{n - 1}}{ + ^n}{C_n}{\left( { - x} \right)^n}\]
Solving, \[{(1 - x)^n}{ = ^n}{C_0}{ - ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{n - 1}}^n{C_{n - 1}}{x^{n - 1}} + {\left( { - 1} \right)^n}^n{C_n}{x^n}\]
Complete step-by-step answer:
We need to find out the value of \[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\].
Now we can use the binomial expansion putting \[x = 1,y = x,n = 30\] we get,
\[ \Rightarrow {(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}\]
Solving we get,
\[ \Rightarrow {(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}} \ldots \ldots \ldots \left( i \right)\]
Again, we can use the binomial expansion putting \[x = 1,y = - x,n = 30\]we get,
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0} + \left( { - 1} \right){ \times ^{30}}{C_1}{x^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{30 - 1}}{ \times ^{30}}{C_{30 - 1}}{x^{30 - 1}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{x^{30}}\]Solving we get,
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0} + \left( { - 1} \right){ \times ^{30}}{C_1}{x^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{29}}{ \times ^{30}}{C_{29}}{x^{29}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{x^{30}}\]
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}} \ldots \ldots ..\left( {ii} \right)\]
Now multiplying (i) and (ii) we get,
\[
\Rightarrow {(1 + x)^{30}} \times {(1 - x)^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
\[
\Rightarrow {\left\{ {(1 + x)(1 - x)} \right\}^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
Solving the L.H.S we get,
\[ \Rightarrow {\left\{ {(1 + x)(1 - x)} \right\}^{30}} = {(1 - {x^2})^{30}}\]
Hence, we have to calculate the multiplication for the RHS,
\[
\Rightarrow {(1 - {x^2})^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \ldots \ldots \left( {iii} \right) \\
\]
By applying Binomial expansion in the L.H.S, that is substituting the $x$ as ${x^2}$ in binomial expansion of \[{(1 - x)^{30}}\] we get,
\[
\Rightarrow {(1 - {x^2})^{30}} \\
{ = ^{30}}{C_0} + {\left( { - 1} \right)^1}{ \times ^{30}}{C_1}{\left( {{x^2}} \right)^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{\left( {{x^2}} \right)^2} + ....... + {\left( { - 1} \right)^{10}}{ \times ^{30}}{C_{10}}{\left( {{x^2}} \right)^{10}} + .... + {\left( { - 1} \right)^{30 - 1}}{ \times ^{30}}{C_{30 - 1}}{\left( {{x^2}} \right)^{30 - 1}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{\left( {{x^2}} \right)^{30}} \\
\]
Simplifying (add and subtract the terms in power) we get,
\[ \Rightarrow {(1 - {x^2})^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{\left( {{x^2}} \right)^{10}} - .....{ - ^{30}}{C_{29}}{\left( {{x^2}} \right)^{29}}{ + ^{30}}{C_{30}}{\left( {{x^2}} \right)^{30}}\]
Multiplying the power values to simplify,
\[ \Rightarrow {(1 - {x^2})^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{x^{20}} - .....{ - ^{30}}{C_{29}}{x^{58}}{ + ^{30}}{C_{30}}{x^{60}}\]
Putting the above expression of L.H.S in (iii), we get,
\[
{ \Rightarrow ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{x^{20}} - .....{ - ^{30}}{C_{29}}{x^{58}}{ + ^{30}}{C_{30}}{x^{60}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
Now, we need to find out the value of
\[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\]
We can write it as,
\[{ \Rightarrow ^{30}}{C_0}^{30}{C_{20}}{ - ^{30}}{C_1}^{30}{C_{19}}{ + ^{30}}{C_2}^{30}{C_{18}} - .......{ + ^{30}}{C_{10}}^{30}{C_{10}}\]
Since we know from combination rule,
\[{ \Rightarrow ^n}{C_r}{ = ^n}{C_{n - r}}\]
Comparing the coefficient of \[{x^{20}}\] from both sides we get,
\[{\therefore ^{30}}{C_{10}}{ = ^{30}}{C_0}{ \times ^{30}}{C_{20}}{ - ^{30}}{C_1}{ \times ^{30}}{C_{19}}{ + ^{30}}{C_2}^{30}{C_{18}} - .......{ + ^{30}}{C_{10}}^{30}{C_{10}}\]
Hence (A) is the correct option.
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

