
The value of \[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\] is
(A) \[^{30}{C_{10}}\]
(B) \[^{30}{C_{15}}\]
(C) \[^{30}{C_{13}}\]
(D) \[^{60}{C_{30}}\]
Answer
567.9k+ views
Hint: Here we will apply the Binomial Expansion to solve the given problem. A combination is the number of ways we can combine things, when the order does not matter.
The binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial \[{(x + y)^n}\].
Formula used: Combination rule: \[^n{C_r}{ = ^n}{C_{n - r}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Putting \[x = 1,y = x\], we get,
\[{(1 + x)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_{n - 1}}{x^{n - 1}}{ + ^n}{C_n}{x^n}\]
Putting \[x = 1,y = - x\], we get,
\[{(1 - x)^n}{ = ^n}{C_0}{ + ^n}{C_1}{\left( { - x} \right)^1}{ + ^n}{C_2}{\left( { - x} \right)^2} + ......{ + ^n}{C_{n - 1}}{\left( { - x} \right)^{n - 1}}{ + ^n}{C_n}{\left( { - x} \right)^n}\]
Solving, \[{(1 - x)^n}{ = ^n}{C_0}{ - ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{n - 1}}^n{C_{n - 1}}{x^{n - 1}} + {\left( { - 1} \right)^n}^n{C_n}{x^n}\]
Complete step-by-step answer:
We need to find out the value of \[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\].
Now we can use the binomial expansion putting \[x = 1,y = x,n = 30\] we get,
\[ \Rightarrow {(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}\]
Solving we get,
\[ \Rightarrow {(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}} \ldots \ldots \ldots \left( i \right)\]
Again, we can use the binomial expansion putting \[x = 1,y = - x,n = 30\]we get,
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0} + \left( { - 1} \right){ \times ^{30}}{C_1}{x^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{30 - 1}}{ \times ^{30}}{C_{30 - 1}}{x^{30 - 1}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{x^{30}}\]Solving we get,
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0} + \left( { - 1} \right){ \times ^{30}}{C_1}{x^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{29}}{ \times ^{30}}{C_{29}}{x^{29}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{x^{30}}\]
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}} \ldots \ldots ..\left( {ii} \right)\]
Now multiplying (i) and (ii) we get,
\[
\Rightarrow {(1 + x)^{30}} \times {(1 - x)^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
\[
\Rightarrow {\left\{ {(1 + x)(1 - x)} \right\}^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
Solving the L.H.S we get,
\[ \Rightarrow {\left\{ {(1 + x)(1 - x)} \right\}^{30}} = {(1 - {x^2})^{30}}\]
Hence, we have to calculate the multiplication for the RHS,
\[
\Rightarrow {(1 - {x^2})^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \ldots \ldots \left( {iii} \right) \\
\]
By applying Binomial expansion in the L.H.S, that is substituting the $x$ as ${x^2}$ in binomial expansion of \[{(1 - x)^{30}}\] we get,
\[
\Rightarrow {(1 - {x^2})^{30}} \\
{ = ^{30}}{C_0} + {\left( { - 1} \right)^1}{ \times ^{30}}{C_1}{\left( {{x^2}} \right)^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{\left( {{x^2}} \right)^2} + ....... + {\left( { - 1} \right)^{10}}{ \times ^{30}}{C_{10}}{\left( {{x^2}} \right)^{10}} + .... + {\left( { - 1} \right)^{30 - 1}}{ \times ^{30}}{C_{30 - 1}}{\left( {{x^2}} \right)^{30 - 1}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{\left( {{x^2}} \right)^{30}} \\
\]
Simplifying (add and subtract the terms in power) we get,
\[ \Rightarrow {(1 - {x^2})^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{\left( {{x^2}} \right)^{10}} - .....{ - ^{30}}{C_{29}}{\left( {{x^2}} \right)^{29}}{ + ^{30}}{C_{30}}{\left( {{x^2}} \right)^{30}}\]
Multiplying the power values to simplify,
\[ \Rightarrow {(1 - {x^2})^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{x^{20}} - .....{ - ^{30}}{C_{29}}{x^{58}}{ + ^{30}}{C_{30}}{x^{60}}\]
Putting the above expression of L.H.S in (iii), we get,
\[
{ \Rightarrow ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{x^{20}} - .....{ - ^{30}}{C_{29}}{x^{58}}{ + ^{30}}{C_{30}}{x^{60}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
Now, we need to find out the value of
\[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\]
We can write it as,
\[{ \Rightarrow ^{30}}{C_0}^{30}{C_{20}}{ - ^{30}}{C_1}^{30}{C_{19}}{ + ^{30}}{C_2}^{30}{C_{18}} - .......{ + ^{30}}{C_{10}}^{30}{C_{10}}\]
Since we know from combination rule,
\[{ \Rightarrow ^n}{C_r}{ = ^n}{C_{n - r}}\]
Comparing the coefficient of \[{x^{20}}\] from both sides we get,
\[{\therefore ^{30}}{C_{10}}{ = ^{30}}{C_0}{ \times ^{30}}{C_{20}}{ - ^{30}}{C_1}{ \times ^{30}}{C_{19}}{ + ^{30}}{C_2}^{30}{C_{18}} - .......{ + ^{30}}{C_{10}}^{30}{C_{10}}\]
Hence (A) is the correct option.
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
The binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial \[{(x + y)^n}\].
Formula used: Combination rule: \[^n{C_r}{ = ^n}{C_{n - r}}\]
Binomial expansion:
\[{(x + y)^n}{ = ^n}{C_0}{x^n}{ + ^n}{C_1}{x^{n - 1}}{y^1}{ + ^n}{C_2}{x^{n - 2}}{y^2} + ......{ + ^n}{C_{n - 1}}x{y^{n - 1}}{ + ^n}{C_n}{y^n}\]
Putting \[x = 1,y = x\], we get,
\[{(1 + x)^n}{ = ^n}{C_0}{ + ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2} + ......{ + ^n}{C_{n - 1}}{x^{n - 1}}{ + ^n}{C_n}{x^n}\]
Putting \[x = 1,y = - x\], we get,
\[{(1 - x)^n}{ = ^n}{C_0}{ + ^n}{C_1}{\left( { - x} \right)^1}{ + ^n}{C_2}{\left( { - x} \right)^2} + ......{ + ^n}{C_{n - 1}}{\left( { - x} \right)^{n - 1}}{ + ^n}{C_n}{\left( { - x} \right)^n}\]
Solving, \[{(1 - x)^n}{ = ^n}{C_0}{ - ^n}{C_1}{x^1}{ + ^n}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{n - 1}}^n{C_{n - 1}}{x^{n - 1}} + {\left( { - 1} \right)^n}^n{C_n}{x^n}\]
Complete step-by-step answer:
We need to find out the value of \[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\].
Now we can use the binomial expansion putting \[x = 1,y = x,n = 30\] we get,
\[ \Rightarrow {(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}\]
Solving we get,
\[ \Rightarrow {(1 + x)^{30}}{ = ^{30}}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}} \ldots \ldots \ldots \left( i \right)\]
Again, we can use the binomial expansion putting \[x = 1,y = - x,n = 30\]we get,
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0} + \left( { - 1} \right){ \times ^{30}}{C_1}{x^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{30 - 1}}{ \times ^{30}}{C_{30 - 1}}{x^{30 - 1}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{x^{30}}\]Solving we get,
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0} + \left( { - 1} \right){ \times ^{30}}{C_1}{x^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{x^2} + ...... + {\left( { - 1} \right)^{29}}{ \times ^{30}}{C_{29}}{x^{29}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{x^{30}}\]
\[ \Rightarrow {(1 - x)^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}} \ldots \ldots ..\left( {ii} \right)\]
Now multiplying (i) and (ii) we get,
\[
\Rightarrow {(1 + x)^{30}} \times {(1 - x)^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
\[
\Rightarrow {\left\{ {(1 + x)(1 - x)} \right\}^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
Solving the L.H.S we get,
\[ \Rightarrow {\left\{ {(1 + x)(1 - x)} \right\}^{30}} = {(1 - {x^2})^{30}}\]
Hence, we have to calculate the multiplication for the RHS,
\[
\Rightarrow {(1 - {x^2})^{30}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \ldots \ldots \left( {iii} \right) \\
\]
By applying Binomial expansion in the L.H.S, that is substituting the $x$ as ${x^2}$ in binomial expansion of \[{(1 - x)^{30}}\] we get,
\[
\Rightarrow {(1 - {x^2})^{30}} \\
{ = ^{30}}{C_0} + {\left( { - 1} \right)^1}{ \times ^{30}}{C_1}{\left( {{x^2}} \right)^1} + {\left( { - 1} \right)^2}{ \times ^{30}}{C_2}{\left( {{x^2}} \right)^2} + ....... + {\left( { - 1} \right)^{10}}{ \times ^{30}}{C_{10}}{\left( {{x^2}} \right)^{10}} + .... + {\left( { - 1} \right)^{30 - 1}}{ \times ^{30}}{C_{30 - 1}}{\left( {{x^2}} \right)^{30 - 1}} + {\left( { - 1} \right)^{30}}{ \times ^{30}}{C_{30}}{\left( {{x^2}} \right)^{30}} \\
\]
Simplifying (add and subtract the terms in power) we get,
\[ \Rightarrow {(1 - {x^2})^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{\left( {{x^2}} \right)^{10}} - .....{ - ^{30}}{C_{29}}{\left( {{x^2}} \right)^{29}}{ + ^{30}}{C_{30}}{\left( {{x^2}} \right)^{30}}\]
Multiplying the power values to simplify,
\[ \Rightarrow {(1 - {x^2})^{30}}{ = ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{x^{20}} - .....{ - ^{30}}{C_{29}}{x^{58}}{ + ^{30}}{C_{30}}{x^{60}}\]
Putting the above expression of L.H.S in (iii), we get,
\[
{ \Rightarrow ^{30}}{C_0}{ - ^{30}}{C_1}{x^2}{ + ^{30}}{C_2}{x^4} + ...{ + ^{30}}{C_{10}}{x^{20}} - .....{ - ^{30}}{C_{29}}{x^{58}}{ + ^{30}}{C_{30}}{x^{60}} \\
{\text{ }} = \left\{ {^{30}{C_0}{ + ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ + ^{30}}{C_{29}}{x^{29}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \times \left\{ {^{30}{C_0}{ - ^{30}}{C_1}{x^1}{ + ^{30}}{C_2}{x^2} + ......{ - ^{30}}{C_{30 - 1}}{x^{30 - 1}}{ + ^{30}}{C_{30}}{x^{30}}} \right\} \\
\]
Now, we need to find out the value of
\[^{30}{C_0}^{30}{C_{10}}{ - ^{30}}{C_1}^{30}{C_{11}}{ + ^{30}}{C_2}^{30}{C_{12}} - .......{ + ^{30}}{C_{10}}^{30}{C_{20}}\]
We can write it as,
\[{ \Rightarrow ^{30}}{C_0}^{30}{C_{20}}{ - ^{30}}{C_1}^{30}{C_{19}}{ + ^{30}}{C_2}^{30}{C_{18}} - .......{ + ^{30}}{C_{10}}^{30}{C_{10}}\]
Since we know from combination rule,
\[{ \Rightarrow ^n}{C_r}{ = ^n}{C_{n - r}}\]
Comparing the coefficient of \[{x^{20}}\] from both sides we get,
\[{\therefore ^{30}}{C_{10}}{ = ^{30}}{C_0}{ \times ^{30}}{C_{20}}{ - ^{30}}{C_1}{ \times ^{30}}{C_{19}}{ + ^{30}}{C_2}^{30}{C_{18}} - .......{ + ^{30}}{C_{10}}^{30}{C_{10}}\]
Hence (A) is the correct option.
Note: In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter. For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

