
The value of $ 2{{\tan }^{-1}}\left( \operatorname{cosec}{{\tan }^{-1}}x-\tan {{\cot }^{-1}}x \right) $ is
A. $ {{\tan }^{-1}}x $
B. $ \tan x $
C. $ \cot x $
D. $ cose{{c}^{-1}}x $
Answer
555.3k+ views
Hint: To solve this question we have to substitute the value of $ {{\tan }^{-1}}x=\theta $ , so we get $ x=\tan \theta $ . Then solving further we get the value of $ \theta $ in terms of x. Then, by substituting the value in the given expression and solving further we get the desired answer. Trigonometric properties are used in these questions to substitute the values.
Complete step by step answer:
We have been given an expression $ 2{{\tan }^{-1}}\left( \operatorname{cosec}{{\tan }^{-1}}x-\tan {{\cot }^{-1}}x \right) $
We have to find the value of the given expression.
Let us assume $ {{\tan }^{-1}}x=\theta $ , so we get $ x=\tan \theta $
Now, we know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ and $ \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } $
Now, substituting the values we get
\[\begin{align}
& \Rightarrow x=\dfrac{\sin \theta }{\cos \theta } \\
& \Rightarrow x=\dfrac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }} \\
& \Rightarrow x=\dfrac{1}{cosec\theta \sqrt{1-\dfrac{1}{cose{{c}^{2}}\theta }}} \\
& \Rightarrow x=\dfrac{1}{cosec\theta \sqrt{\dfrac{cose{{c}^{2}}\theta -1}{cose{{c}^{2}}\theta }}} \\
& \Rightarrow x=\dfrac{1}{\sqrt{cose{{c}^{2}}\theta -1}} \\
& \Rightarrow \theta =cose{{c}^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}}{x} \\
\end{align}\]
Now, substituting the values in given expression we get
$ \Rightarrow 2{{\tan }^{-1}}\left[ \operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}}{x} \right)-\tan \left( {{\tan }^{-1}}\dfrac{1}{x} \right) \right] $
Now, solving further we get
$ \begin{align}
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}}{x}-\dfrac{1}{x} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right) \\
\end{align} $
Now, again putting the value $ x=\tan \theta $ we get
$ \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta } \right) $
Now, we know that $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Now, substituting the values we get
$ \begin{align}
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sqrt{{{\sec }^{2}}\theta }-1}{\tan \theta } \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sec \theta -1}{\tan \theta } \right) \\
\end{align} $
Now, we know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ and $ \sec \theta =\dfrac{1}{\cos \theta } $ .
Substituting the values we get
$ \begin{align}
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }} \right) \\
\end{align} $
Now, solving further we get
$ \begin{align}
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{2{{\sin }^{2}}\dfrac{\theta }{2}}{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sin \dfrac{\theta }{2}}{\cos \dfrac{\theta }{2}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \tan \dfrac{\theta }{2} \right) \\
\end{align} $
Now, we get
\[\begin{align}
& \Rightarrow 2\times \dfrac{\theta }{2} \\
& \Rightarrow \theta \\
\end{align}\]
Now, we have $ {{\tan }^{-1}}x=\theta $ .
So, the value of $ 2{{\tan }^{-1}}\left( \operatorname{cosec}{{\tan }^{-1}}x-\tan {{\cot }^{-1}}x \right) $ is $ {{\tan }^{-1}}x $ .
Option A is the correct answer.
Note:
To solve these types of questions students must have a good knowledge of trigonometric ratios, trigonometric identities, and trigonometric functions. Please be careful while substituting the values. Avoid calculation mistakes. If students try to solve this question without substituting the value $ {{\tan }^{-1}}x=\theta $, they will not be able to solve it and it becomes lengthy.
Complete step by step answer:
We have been given an expression $ 2{{\tan }^{-1}}\left( \operatorname{cosec}{{\tan }^{-1}}x-\tan {{\cot }^{-1}}x \right) $
We have to find the value of the given expression.
Let us assume $ {{\tan }^{-1}}x=\theta $ , so we get $ x=\tan \theta $
Now, we know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ and $ \cos \theta =\sqrt{1-{{\sin }^{2}}\theta } $
Now, substituting the values we get
\[\begin{align}
& \Rightarrow x=\dfrac{\sin \theta }{\cos \theta } \\
& \Rightarrow x=\dfrac{\sin \theta }{\sqrt{1-{{\sin }^{2}}\theta }} \\
& \Rightarrow x=\dfrac{1}{cosec\theta \sqrt{1-\dfrac{1}{cose{{c}^{2}}\theta }}} \\
& \Rightarrow x=\dfrac{1}{cosec\theta \sqrt{\dfrac{cose{{c}^{2}}\theta -1}{cose{{c}^{2}}\theta }}} \\
& \Rightarrow x=\dfrac{1}{\sqrt{cose{{c}^{2}}\theta -1}} \\
& \Rightarrow \theta =cose{{c}^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}}{x} \\
\end{align}\]
Now, substituting the values in given expression we get
$ \Rightarrow 2{{\tan }^{-1}}\left[ \operatorname{cosec}\left( {{\operatorname{cosec}}^{-1}}\dfrac{\sqrt{1+{{x}^{2}}}}{x} \right)-\tan \left( {{\tan }^{-1}}\dfrac{1}{x} \right) \right] $
Now, solving further we get
$ \begin{align}
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}}{x}-\dfrac{1}{x} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{x}^{2}}}-1}{x} \right) \\
\end{align} $
Now, again putting the value $ x=\tan \theta $ we get
$ \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sqrt{1+{{\tan }^{2}}\theta }-1}{\tan \theta } \right) $
Now, we know that $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Now, substituting the values we get
$ \begin{align}
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sqrt{{{\sec }^{2}}\theta }-1}{\tan \theta } \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sec \theta -1}{\tan \theta } \right) \\
\end{align} $
Now, we know that $ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ and $ \sec \theta =\dfrac{1}{\cos \theta } $ .
Substituting the values we get
$ \begin{align}
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\dfrac{1}{\cos \theta }-1}{\dfrac{\sin \theta }{\cos \theta }} \right) \\
\end{align} $
Now, solving further we get
$ \begin{align}
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\dfrac{1-\cos \theta }{\cos \theta }}{\dfrac{\sin \theta }{\cos \theta }} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{2{{\sin }^{2}}\dfrac{\theta }{2}}{2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \dfrac{\sin \dfrac{\theta }{2}}{\cos \dfrac{\theta }{2}} \right) \\
& \Rightarrow 2{{\tan }^{-1}}\left( \tan \dfrac{\theta }{2} \right) \\
\end{align} $
Now, we get
\[\begin{align}
& \Rightarrow 2\times \dfrac{\theta }{2} \\
& \Rightarrow \theta \\
\end{align}\]
Now, we have $ {{\tan }^{-1}}x=\theta $ .
So, the value of $ 2{{\tan }^{-1}}\left( \operatorname{cosec}{{\tan }^{-1}}x-\tan {{\cot }^{-1}}x \right) $ is $ {{\tan }^{-1}}x $ .
Option A is the correct answer.
Note:
To solve these types of questions students must have a good knowledge of trigonometric ratios, trigonometric identities, and trigonometric functions. Please be careful while substituting the values. Avoid calculation mistakes. If students try to solve this question without substituting the value $ {{\tan }^{-1}}x=\theta $, they will not be able to solve it and it becomes lengthy.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

