
The value of \[{}^2{P_1} + {}^3{P_1} + ... + {}^n{P_1}\] is equal to
A.\[\dfrac{{{n^2} - n + 2}}{2}\]
B.\[\dfrac{{{n^2} + n + 2}}{2}\]
C.\[\dfrac{{{n^2} + n - 1}}{2}\]
D.\[\dfrac{{{n^2} - n - 1}}{2}\]
E.\[\dfrac{{{n^2} + n - 2}}{2}\]
Answer
564.3k+ views
Hint: Here, we will use formula of permutation, \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen. Then we will simplify it using \[1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\].
Complete step-by-step answer:
We are given that \[{}^2{P_1} + {}^3{P_1} + ... + {}^n{P_1}\].
We know that the formula of permutation, \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen.
Using the above formula in the terms of the given series, we get
\[
\Rightarrow \dfrac{{2!}}{{\left( {2 - 1} \right)!}} + \dfrac{{3!}}{{\left( {3 - 1} \right)!}} + ... + \dfrac{{n!}}{{\left( {n - 1} \right)!}} \\
\Rightarrow \dfrac{{2!}}{{1!}} + \dfrac{{3!}}{{2!}} + ... + \dfrac{{n!}}{{\left( {n - 1} \right)!}} \\
\]
Simplifying the factorials in the above expression, we get
\[ \Rightarrow \dfrac{{2 \times 1!}}{{1!}} + \dfrac{{3 \times 2!}}{{2!}} + ... + \dfrac{{n \times \left( {n - 1} \right)!}}{{\left( {n - 1} \right)!}}\]
We will now cancel the same factorials in numerators and denominators in the above expression, we get
\[ \Rightarrow 2 + 3 + ... + n\]
Adding and subtracting the above equation with 1, we get
\[ \Rightarrow 1 + 2 + 3 + ... + n - 1\]
Using the formula, \[1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\] in the above equation and simplifying, we get
\[
\Rightarrow \dfrac{{n\left( {n + 1} \right)}}{2} - 1 \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2}}{2} \\
\Rightarrow \dfrac{{{n^2} + n - 2}}{2} \\
\]
Hence, option E is correct.
Note: In solving these types of questions, you should be familiar with the formula of permutations. Some students use the formula of combinations, \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\] instead of permutations is \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, which is wrong.
Complete step-by-step answer:
We are given that \[{}^2{P_1} + {}^3{P_1} + ... + {}^n{P_1}\].
We know that the formula of permutation, \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen.
Using the above formula in the terms of the given series, we get
\[
\Rightarrow \dfrac{{2!}}{{\left( {2 - 1} \right)!}} + \dfrac{{3!}}{{\left( {3 - 1} \right)!}} + ... + \dfrac{{n!}}{{\left( {n - 1} \right)!}} \\
\Rightarrow \dfrac{{2!}}{{1!}} + \dfrac{{3!}}{{2!}} + ... + \dfrac{{n!}}{{\left( {n - 1} \right)!}} \\
\]
Simplifying the factorials in the above expression, we get
\[ \Rightarrow \dfrac{{2 \times 1!}}{{1!}} + \dfrac{{3 \times 2!}}{{2!}} + ... + \dfrac{{n \times \left( {n - 1} \right)!}}{{\left( {n - 1} \right)!}}\]
We will now cancel the same factorials in numerators and denominators in the above expression, we get
\[ \Rightarrow 2 + 3 + ... + n\]
Adding and subtracting the above equation with 1, we get
\[ \Rightarrow 1 + 2 + 3 + ... + n - 1\]
Using the formula, \[1 + 2 + 3 + ... + n = \dfrac{{n\left( {n + 1} \right)}}{2}\] in the above equation and simplifying, we get
\[
\Rightarrow \dfrac{{n\left( {n + 1} \right)}}{2} - 1 \\
\Rightarrow \dfrac{{n\left( {n + 1} \right) - 2}}{2} \\
\Rightarrow \dfrac{{{n^2} + n - 2}}{2} \\
\]
Hence, option E is correct.
Note: In solving these types of questions, you should be familiar with the formula of permutations. Some students use the formula of combinations, \[{}^n{C_r} = \dfrac{{\left. {\underline {\,
n \,}}\! \right| }}{{\left. {\underline {\,
r \,}}\! \right| \cdot \left. {\underline {\,
{n - r} \,}}\! \right| }}\] instead of permutations is \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\], where \[n\] is the number of items, and \[r\] represents the number of items being chosen, which is wrong.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

