
The value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\] is?
A. \[\dfrac{{\left( {2n} \right)!}}{{n!}}\]
B. \[\dfrac{{\left( {2n} \right)!}}{{{2^n}}}\]
C. \[\dfrac{{n!}}{{\left( {2n} \right)!}}\]
D. None of these
Answer
510.9k+ views
Hint: Here in this question given a series of numbers, we have to find their exact value or simplest form of the series. For this, first we need to multiply and divide the even integers and further simplify using the factorial concepts and by using basic arithmetic operations to get the required solution.
Complete step by step answer:
A number of things or events of the same class coming one after another in spatial or temporal succession is known as series.
Now consider the given series:
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\]
Multiply and divide the given series with series of even integer or Multiply and divide by \[2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n\], then we have
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} \times \dfrac{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
On Multiplication, we have
\[ \Rightarrow \dfrac{{{2^n}\left\{ {1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
In numerator \[1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n\] is equal to the value of \[\left( {2n} \right)!\], then the above inequality becomes
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
Take 2 as common in denominator, then
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{{2^n}\left( {1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n} \right)}}\]
On cancelling the like terms \[{2^n}\] in both numerator and denominator, then we get
\[ \Rightarrow \dfrac{{\left( {2n} \right)!}}{{1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n}}\]
In denominator \[1 \cdot 2 \cdot 3 \cdot 4..\,\,...\left( {n - 1} \right) \cdot n\] is equal to the value of \[n!\], then the above inequality becomes
\[\therefore \,\,\,\,\dfrac{{\left( {2n} \right)!}}{{n!}}\]
Hence, the required value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} = \dfrac{{\left( {2n} \right)!}}{{n!}}\].
So, the correct answer is “Option A”.
Note: Remember, the series of even integer means the multiple of even numbers up to ‘n’ terms i.e., \[2 \cdot 4 \cdot 6 \cdot 8...\,\,...\left( {2n - 2} \right)2n\].
The series of odd integer means the multiple of odd numbers up to the ‘n’ terms i.e., \[1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)\].
Factorial is the continued product of first ‘n’ natural numbers is called the “n factorial” and it represented by \[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot .....3 \cdot 2 \cdot 1\].
Complete step by step answer:
A number of things or events of the same class coming one after another in spatial or temporal succession is known as series.
Now consider the given series:
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\]
Multiply and divide the given series with series of even integer or Multiply and divide by \[2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n\], then we have
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} \times \dfrac{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
On Multiplication, we have
\[ \Rightarrow \dfrac{{{2^n}\left\{ {1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
In numerator \[1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n\] is equal to the value of \[\left( {2n} \right)!\], then the above inequality becomes
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
Take 2 as common in denominator, then
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{{2^n}\left( {1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n} \right)}}\]
On cancelling the like terms \[{2^n}\] in both numerator and denominator, then we get
\[ \Rightarrow \dfrac{{\left( {2n} \right)!}}{{1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n}}\]
In denominator \[1 \cdot 2 \cdot 3 \cdot 4..\,\,...\left( {n - 1} \right) \cdot n\] is equal to the value of \[n!\], then the above inequality becomes
\[\therefore \,\,\,\,\dfrac{{\left( {2n} \right)!}}{{n!}}\]
Hence, the required value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} = \dfrac{{\left( {2n} \right)!}}{{n!}}\].
So, the correct answer is “Option A”.
Note: Remember, the series of even integer means the multiple of even numbers up to ‘n’ terms i.e., \[2 \cdot 4 \cdot 6 \cdot 8...\,\,...\left( {2n - 2} \right)2n\].
The series of odd integer means the multiple of odd numbers up to the ‘n’ terms i.e., \[1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)\].
Factorial is the continued product of first ‘n’ natural numbers is called the “n factorial” and it represented by \[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot .....3 \cdot 2 \cdot 1\].
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

