
The value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\] is?
A. \[\dfrac{{\left( {2n} \right)!}}{{n!}}\]
B. \[\dfrac{{\left( {2n} \right)!}}{{{2^n}}}\]
C. \[\dfrac{{n!}}{{\left( {2n} \right)!}}\]
D. None of these
Answer
413.4k+ views
Hint: Here in this question given a series of numbers, we have to find their exact value or simplest form of the series. For this, first we need to multiply and divide the even integers and further simplify using the factorial concepts and by using basic arithmetic operations to get the required solution.
Complete step by step answer:
A number of things or events of the same class coming one after another in spatial or temporal succession is known as series.
Now consider the given series:
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\]
Multiply and divide the given series with series of even integer or Multiply and divide by \[2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n\], then we have
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} \times \dfrac{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
On Multiplication, we have
\[ \Rightarrow \dfrac{{{2^n}\left\{ {1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
In numerator \[1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n\] is equal to the value of \[\left( {2n} \right)!\], then the above inequality becomes
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
Take 2 as common in denominator, then
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{{2^n}\left( {1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n} \right)}}\]
On cancelling the like terms \[{2^n}\] in both numerator and denominator, then we get
\[ \Rightarrow \dfrac{{\left( {2n} \right)!}}{{1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n}}\]
In denominator \[1 \cdot 2 \cdot 3 \cdot 4..\,\,...\left( {n - 1} \right) \cdot n\] is equal to the value of \[n!\], then the above inequality becomes
\[\therefore \,\,\,\,\dfrac{{\left( {2n} \right)!}}{{n!}}\]
Hence, the required value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} = \dfrac{{\left( {2n} \right)!}}{{n!}}\].
So, the correct answer is “Option A”.
Note: Remember, the series of even integer means the multiple of even numbers up to ‘n’ terms i.e., \[2 \cdot 4 \cdot 6 \cdot 8...\,\,...\left( {2n - 2} \right)2n\].
The series of odd integer means the multiple of odd numbers up to the ‘n’ terms i.e., \[1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)\].
Factorial is the continued product of first ‘n’ natural numbers is called the “n factorial” and it represented by \[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot .....3 \cdot 2 \cdot 1\].
Complete step by step answer:
A number of things or events of the same class coming one after another in spatial or temporal succession is known as series.
Now consider the given series:
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\]
Multiply and divide the given series with series of even integer or Multiply and divide by \[2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n\], then we have
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} \times \dfrac{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
On Multiplication, we have
\[ \Rightarrow \dfrac{{{2^n}\left\{ {1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
In numerator \[1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n\] is equal to the value of \[\left( {2n} \right)!\], then the above inequality becomes
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
Take 2 as common in denominator, then
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{{2^n}\left( {1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n} \right)}}\]
On cancelling the like terms \[{2^n}\] in both numerator and denominator, then we get
\[ \Rightarrow \dfrac{{\left( {2n} \right)!}}{{1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n}}\]
In denominator \[1 \cdot 2 \cdot 3 \cdot 4..\,\,...\left( {n - 1} \right) \cdot n\] is equal to the value of \[n!\], then the above inequality becomes
\[\therefore \,\,\,\,\dfrac{{\left( {2n} \right)!}}{{n!}}\]
Hence, the required value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} = \dfrac{{\left( {2n} \right)!}}{{n!}}\].
So, the correct answer is “Option A”.
Note: Remember, the series of even integer means the multiple of even numbers up to ‘n’ terms i.e., \[2 \cdot 4 \cdot 6 \cdot 8...\,\,...\left( {2n - 2} \right)2n\].
The series of odd integer means the multiple of odd numbers up to the ‘n’ terms i.e., \[1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)\].
Factorial is the continued product of first ‘n’ natural numbers is called the “n factorial” and it represented by \[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot .....3 \cdot 2 \cdot 1\].
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

Number of valence electrons in Chlorine ion are a 16 class 11 chemistry CBSE

What is the modal class for the following table given class 11 maths CBSE
