
The value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\] is?
A. \[\dfrac{{\left( {2n} \right)!}}{{n!}}\]
B. \[\dfrac{{\left( {2n} \right)!}}{{{2^n}}}\]
C. \[\dfrac{{n!}}{{\left( {2n} \right)!}}\]
D. None of these
Answer
497.1k+ views
Hint: Here in this question given a series of numbers, we have to find their exact value or simplest form of the series. For this, first we need to multiply and divide the even integers and further simplify using the factorial concepts and by using basic arithmetic operations to get the required solution.
Complete step by step answer:
A number of things or events of the same class coming one after another in spatial or temporal succession is known as series.
Now consider the given series:
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\]
Multiply and divide the given series with series of even integer or Multiply and divide by \[2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n\], then we have
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} \times \dfrac{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
On Multiplication, we have
\[ \Rightarrow \dfrac{{{2^n}\left\{ {1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
In numerator \[1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n\] is equal to the value of \[\left( {2n} \right)!\], then the above inequality becomes
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
Take 2 as common in denominator, then
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{{2^n}\left( {1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n} \right)}}\]
On cancelling the like terms \[{2^n}\] in both numerator and denominator, then we get
\[ \Rightarrow \dfrac{{\left( {2n} \right)!}}{{1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n}}\]
In denominator \[1 \cdot 2 \cdot 3 \cdot 4..\,\,...\left( {n - 1} \right) \cdot n\] is equal to the value of \[n!\], then the above inequality becomes
\[\therefore \,\,\,\,\dfrac{{\left( {2n} \right)!}}{{n!}}\]
Hence, the required value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} = \dfrac{{\left( {2n} \right)!}}{{n!}}\].
So, the correct answer is “Option A”.
Note: Remember, the series of even integer means the multiple of even numbers up to ‘n’ terms i.e., \[2 \cdot 4 \cdot 6 \cdot 8...\,\,...\left( {2n - 2} \right)2n\].
The series of odd integer means the multiple of odd numbers up to the ‘n’ terms i.e., \[1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)\].
Factorial is the continued product of first ‘n’ natural numbers is called the “n factorial” and it represented by \[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot .....3 \cdot 2 \cdot 1\].
Complete step by step answer:
A number of things or events of the same class coming one after another in spatial or temporal succession is known as series.
Now consider the given series:
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\}\]
Multiply and divide the given series with series of even integer or Multiply and divide by \[2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n\], then we have
\[ \Rightarrow {2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} \times \dfrac{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
On Multiplication, we have
\[ \Rightarrow \dfrac{{{2^n}\left\{ {1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
In numerator \[1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6...\,\,...\left( {2n - 3} \right) \cdot \left( {2n - 2} \right) \cdot \left( {2n - 1} \right) \cdot 2n\] is equal to the value of \[\left( {2n} \right)!\], then the above inequality becomes
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{2 \cdot 4 \cdot 6 \ldots \,\,...\left( {2n - 2} \right) \cdot 2n}}\]
Take 2 as common in denominator, then
\[ \Rightarrow \dfrac{{{2^n}\left\{ {\left( {2n} \right)!} \right\}}}{{{2^n}\left( {1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n} \right)}}\]
On cancelling the like terms \[{2^n}\] in both numerator and denominator, then we get
\[ \Rightarrow \dfrac{{\left( {2n} \right)!}}{{1 \cdot 2 \cdot 3 \cdot 4 \ldots \,\,...\left( {n - 1} \right) \cdot n}}\]
In denominator \[1 \cdot 2 \cdot 3 \cdot 4..\,\,...\left( {n - 1} \right) \cdot n\] is equal to the value of \[n!\], then the above inequality becomes
\[\therefore \,\,\,\,\dfrac{{\left( {2n} \right)!}}{{n!}}\]
Hence, the required value of \[{2^n}\left\{ {1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)} \right\} = \dfrac{{\left( {2n} \right)!}}{{n!}}\].
So, the correct answer is “Option A”.
Note: Remember, the series of even integer means the multiple of even numbers up to ‘n’ terms i.e., \[2 \cdot 4 \cdot 6 \cdot 8...\,\,...\left( {2n - 2} \right)2n\].
The series of odd integer means the multiple of odd numbers up to the ‘n’ terms i.e., \[1 \cdot 3 \cdot 5...\,\,...\left( {2n - 3} \right)\left( {2n - 1} \right)\].
Factorial is the continued product of first ‘n’ natural numbers is called the “n factorial” and it represented by \[n! = n \cdot \left( {n - 1} \right) \cdot \left( {n - 2} \right) \cdot \left( {n - 3} \right) \cdot .....3 \cdot 2 \cdot 1\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

