
The value of $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}$ is equal to
$\begin{align}
& a)462 \\
& b)466 \\
& c)469 \\
& d)465 \\
\end{align}$
Answer
562.8k+ views
Hint: Now we know that $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ where n! = n × (n – 1) × (n – 2) × …. 3 × 2 × 1.
Hence using this we will find the value of $^{10}{{C}_{4}}$ and $^{10}{{C}_{5}}$ . Now we will add the following values. To find the value of $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}$ .
Complete step by step answer:
Now first let us understand the meaning of the term $^{n}{{C}_{r}}$ . $^{n}{{C}_{r}}$ is formula which gives us number of ways to select r objects from n objects. For example we have 3 balls and we want to select 2 balls out of it. Then the number of ways in which we can select 2 balls is given by $^{3}{{C}_{2}}$ .
Now let us understand how to calculate the value of $^{n}{{C}_{r}}$ .
To do so we must first understand the term factorial.
Now n factorial is represented as n! and the value of n! is given by n × (n – 1) × (n – 2) × …. 3 × 2 × 1.
For example 4! = 4 × 3 × 2 × 1 = 24.
Now the value of $^{n}{{C}_{r}}$ is given by $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ .
Now let us consider $^{10}{{C}_{4}}$
$\begin{align}
& ^{10}{{C}_{4}}=\dfrac{10!}{\left( 10-4 \right)!4!} \\
& {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10!}{6!4!} \\
& {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10\times 9\times 8\times 7\times 6!}{6!4!} \\
& {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10\times 9\times 8\times 7}{4\times 3\times 2} \\
\end{align}$
$\begin{align}
& {{\Rightarrow }^{10}}{{C}_{4}}=10\times 3\times 7=210 \\
& {{\therefore }^{10}}{{C}_{4}}=210............................\left( 1 \right) \\
\end{align}$
Now consider the term $^{10}{{C}_{5}}$
\[\begin{align}
& ^{10}{{C}_{5}}=\dfrac{10!}{\left( 10-5 \right)!5!} \\
& {{\Rightarrow }^{10}}{{C}_{5}}=\dfrac{10\times 9\times 8\times 7\times 6\times 5!}{5!5!} \\
& {{\Rightarrow }^{10}}{{C}_{5}}=\dfrac{10\times 9\times 8\times 7\times 6}{5\times 4\times 3\times 2\times 1} \\
& {{\Rightarrow }^{10}}{{C}_{5}}=2\times 3\times 7\times 6 \\
& {{\therefore }^{10}}{{C}_{5}}=252......................\left( 2 \right) \\
\end{align}\]
Now adding equation (1) and equation (2) we get,
$\begin{align}
& ^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}=252+210 \\
& {{\therefore }^{10}}{{C}_{4}}{{+}^{10}}{{C}_{5}}=462 \\
\end{align}$
Hence the value of $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}$ is 462.
So, the correct answer is “Option a”.
Note: Now note that we have a property which says $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r+1}}{{=}^{n+1}}{{C}_{r+1}}$ hence using this we can say that $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}{{=}^{11}}{{C}_{5}}$ and hence solve the equation easily.
Hence using this we will find the value of $^{10}{{C}_{4}}$ and $^{10}{{C}_{5}}$ . Now we will add the following values. To find the value of $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}$ .
Complete step by step answer:
Now first let us understand the meaning of the term $^{n}{{C}_{r}}$ . $^{n}{{C}_{r}}$ is formula which gives us number of ways to select r objects from n objects. For example we have 3 balls and we want to select 2 balls out of it. Then the number of ways in which we can select 2 balls is given by $^{3}{{C}_{2}}$ .
Now let us understand how to calculate the value of $^{n}{{C}_{r}}$ .
To do so we must first understand the term factorial.
Now n factorial is represented as n! and the value of n! is given by n × (n – 1) × (n – 2) × …. 3 × 2 × 1.
For example 4! = 4 × 3 × 2 × 1 = 24.
Now the value of $^{n}{{C}_{r}}$ is given by $^{n}{{C}_{r}}=\dfrac{n!}{\left( n-r \right)!r!}$ .
Now let us consider $^{10}{{C}_{4}}$
$\begin{align}
& ^{10}{{C}_{4}}=\dfrac{10!}{\left( 10-4 \right)!4!} \\
& {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10!}{6!4!} \\
& {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10\times 9\times 8\times 7\times 6!}{6!4!} \\
& {{\Rightarrow }^{10}}{{C}_{4}}=\dfrac{10\times 9\times 8\times 7}{4\times 3\times 2} \\
\end{align}$
$\begin{align}
& {{\Rightarrow }^{10}}{{C}_{4}}=10\times 3\times 7=210 \\
& {{\therefore }^{10}}{{C}_{4}}=210............................\left( 1 \right) \\
\end{align}$
Now consider the term $^{10}{{C}_{5}}$
\[\begin{align}
& ^{10}{{C}_{5}}=\dfrac{10!}{\left( 10-5 \right)!5!} \\
& {{\Rightarrow }^{10}}{{C}_{5}}=\dfrac{10\times 9\times 8\times 7\times 6\times 5!}{5!5!} \\
& {{\Rightarrow }^{10}}{{C}_{5}}=\dfrac{10\times 9\times 8\times 7\times 6}{5\times 4\times 3\times 2\times 1} \\
& {{\Rightarrow }^{10}}{{C}_{5}}=2\times 3\times 7\times 6 \\
& {{\therefore }^{10}}{{C}_{5}}=252......................\left( 2 \right) \\
\end{align}\]
Now adding equation (1) and equation (2) we get,
$\begin{align}
& ^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}=252+210 \\
& {{\therefore }^{10}}{{C}_{4}}{{+}^{10}}{{C}_{5}}=462 \\
\end{align}$
Hence the value of $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}$ is 462.
So, the correct answer is “Option a”.
Note: Now note that we have a property which says $^{n}{{C}_{r}}{{+}^{n}}{{C}_{r+1}}{{=}^{n+1}}{{C}_{r+1}}$ hence using this we can say that $^{10}{{C}_{4}}{{+}^{10}}{{C}_{5}}{{=}^{11}}{{C}_{5}}$ and hence solve the equation easily.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

