
The value \[\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \right)\] is equal to:
A. \[\cot 3x\]
B. \[\tan 3x\]
C. \[3\tan 3x\]
D. \[\dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}\]
Answer
507.6k+ views
Hint: To solve this question, first we have to write the given expression replacing \[\cot x\] with the equivalent terms of \[\tan x\]. Simplify the equation by substituting the angle values, taking the L.C.M. and writing the formulas of the multiple angles until the desired solution is obtained.
Complete step-by-step solution:
Given expression:
\[\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \right)\]
Now expanding the terms of the simple expressions, we get;
\[ \Rightarrow \cot x + \dfrac{{\cot 60\cot x - 1}}{{\cot 60 + \cot x}} + \dfrac{{\cot 120\cot x - 1}}{{\cot 120 + \cot x}}\]
Replacing the trigonometric value of \[\cot x\] in terms of \[\tan x\], we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\tan \left( {{{60}^ \circ } + x} \right)}} + \dfrac{1}{{\tan \left( {{{120}^ \circ } + x} \right)}}\]
We have \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
By expanding the obtained equation by substituting it in the above formula, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\dfrac{{\tan {{60}^ \circ } + \tan x}}{{1 - \tan {{60}^ \circ }\tan x}}}} + \dfrac{1}{{\dfrac{{\tan {{120}^ \circ } + \tan x}}{{1 - \tan {{120}^ \circ }\tan x}}}}\]
We have the standard values of \[\tan {60^ \circ }\] and \[\tan {120^ \circ }\].
\[\tan {60^ \circ } = \sqrt 3 \]
\[\tan {120^ \circ } = - \sqrt 3 \]
Substituting these values in the above obtained equation, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\dfrac{{\sqrt 3 + \tan x}}{{1 - \sqrt 3 \tan x}}}} + \dfrac{1}{{\dfrac{{ - \sqrt 3 + \tan x}}{{1 - \left( { - \sqrt 3 } \right)\tan x}}}}\]
Now, simplifying the above equation by sending the denominator of the denominator to the numerator through division, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{1 - \sqrt 3 \tan x}}{{\tan x + \sqrt 3 }} + \dfrac{{1 + \sqrt 3 \tan x}}{{\tan x - \sqrt 3 }}\]
Now, taking the L.C.M. of the two denominators and getting the numerators in the same form by multiplying the denominators of the other fraction, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{\left( {1 - \sqrt 3 \tan x} \right)\left( {\tan x - \sqrt 3 } \right) + \left( {1 + \sqrt 3 \tan x} \right)\left( {\tan x + \sqrt 3 } \right)}}{{\left( {\tan x + \sqrt 3 } \right)\left( {\tan x - \sqrt 3 } \right)}}\]
Now, multiplying the denominators as well as the numerators in respect to the given terms, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{\tan x - \sqrt 3 {{\tan }^2}x - \sqrt 3 + 3\tan x + \tan x + \sqrt 3 {{\tan }^2}x + \sqrt 3 + 3\tan x}}{{{{\tan }^2}x - 3}}\]
Simplifying the terms using simple algebraic expressions and methods, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{2\tan x + 6\tan x}}{{{{\tan }^2}x - 3}}\]
Adding the numerator with like terms, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{8\tan x}}{{{{\tan }^2}x - 3}}\]
Now taking the L.C.M. of the denominators and multiplying the numerators with the opposite denominator, we get;
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 3 + 8{{\tan }^2}x}}{{{{\tan }^3}x - 3\tan x}}\]
Simplifying the numerator, we get;
\[ \Rightarrow \dfrac{{9{{\tan }^2}x - 3}}{{{{\tan }^3}x - 3\tan x}}\]
Taking the negative sign out from both the numerator and the denominator, we get;
\[ \Rightarrow \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}\]
Taking the common terms in the numerator and denominator out, we get;
\[ \Rightarrow \dfrac{{ - 3\left( {1 - 3{{\tan }^2}x} \right)}}{{ - \left( {3\tan x - {{\tan }^2}x} \right)}}\]
Cancelling out the negative sign, we get;
\[ \Rightarrow \dfrac{{3\left( {1 - 3{{\tan }^2}x} \right)}}{{\left( {3\tan x - {{\tan }^2}x} \right)}}\]
Bringing the numerator trigonometric part to the denominator for better access, we get;
\[ \Rightarrow \dfrac{3}{{\left( {\dfrac{{3\tan x - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}} \right)}}\]
Now, the denominator is in the form of \[\tan 3x\]
\[\tan 3x = \dfrac{{3\tan x - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}\]
Substituting the denominator with the above expression, we get;
\[ \Rightarrow \dfrac{3}{{\tan 3x}}\]
Now, substituting the \[\tan x\] in terms of \[\cot x\], we get;
\[ \Rightarrow 3\cot 3x\]
Since we do not have the final answer in the options, we have the mid value answer which is,
\[ \Rightarrow \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}\]
Therefore, for the given expression, we have;
\[\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \right) = \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}\]
$\therefore $ The correct option is D.
Note: We have to know that trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles. The Greeks focused on the calculations of chords, while mathematics in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such a sine.
Complete step-by-step solution:
Given expression:
\[\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \right)\]
Now expanding the terms of the simple expressions, we get;
\[ \Rightarrow \cot x + \dfrac{{\cot 60\cot x - 1}}{{\cot 60 + \cot x}} + \dfrac{{\cot 120\cot x - 1}}{{\cot 120 + \cot x}}\]
Replacing the trigonometric value of \[\cot x\] in terms of \[\tan x\], we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\tan \left( {{{60}^ \circ } + x} \right)}} + \dfrac{1}{{\tan \left( {{{120}^ \circ } + x} \right)}}\]
We have \[\tan \left( {A + B} \right) = \dfrac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\]
By expanding the obtained equation by substituting it in the above formula, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\dfrac{{\tan {{60}^ \circ } + \tan x}}{{1 - \tan {{60}^ \circ }\tan x}}}} + \dfrac{1}{{\dfrac{{\tan {{120}^ \circ } + \tan x}}{{1 - \tan {{120}^ \circ }\tan x}}}}\]
We have the standard values of \[\tan {60^ \circ }\] and \[\tan {120^ \circ }\].
\[\tan {60^ \circ } = \sqrt 3 \]
\[\tan {120^ \circ } = - \sqrt 3 \]
Substituting these values in the above obtained equation, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{1}{{\dfrac{{\sqrt 3 + \tan x}}{{1 - \sqrt 3 \tan x}}}} + \dfrac{1}{{\dfrac{{ - \sqrt 3 + \tan x}}{{1 - \left( { - \sqrt 3 } \right)\tan x}}}}\]
Now, simplifying the above equation by sending the denominator of the denominator to the numerator through division, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{1 - \sqrt 3 \tan x}}{{\tan x + \sqrt 3 }} + \dfrac{{1 + \sqrt 3 \tan x}}{{\tan x - \sqrt 3 }}\]
Now, taking the L.C.M. of the two denominators and getting the numerators in the same form by multiplying the denominators of the other fraction, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{\left( {1 - \sqrt 3 \tan x} \right)\left( {\tan x - \sqrt 3 } \right) + \left( {1 + \sqrt 3 \tan x} \right)\left( {\tan x + \sqrt 3 } \right)}}{{\left( {\tan x + \sqrt 3 } \right)\left( {\tan x - \sqrt 3 } \right)}}\]
Now, multiplying the denominators as well as the numerators in respect to the given terms, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{\tan x - \sqrt 3 {{\tan }^2}x - \sqrt 3 + 3\tan x + \tan x + \sqrt 3 {{\tan }^2}x + \sqrt 3 + 3\tan x}}{{{{\tan }^2}x - 3}}\]
Simplifying the terms using simple algebraic expressions and methods, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{2\tan x + 6\tan x}}{{{{\tan }^2}x - 3}}\]
Adding the numerator with like terms, we get;
\[ \Rightarrow \dfrac{1}{{\tan x}} + \dfrac{{8\tan x}}{{{{\tan }^2}x - 3}}\]
Now taking the L.C.M. of the denominators and multiplying the numerators with the opposite denominator, we get;
\[ \Rightarrow \dfrac{{{{\tan }^2}x - 3 + 8{{\tan }^2}x}}{{{{\tan }^3}x - 3\tan x}}\]
Simplifying the numerator, we get;
\[ \Rightarrow \dfrac{{9{{\tan }^2}x - 3}}{{{{\tan }^3}x - 3\tan x}}\]
Taking the negative sign out from both the numerator and the denominator, we get;
\[ \Rightarrow \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}\]
Taking the common terms in the numerator and denominator out, we get;
\[ \Rightarrow \dfrac{{ - 3\left( {1 - 3{{\tan }^2}x} \right)}}{{ - \left( {3\tan x - {{\tan }^2}x} \right)}}\]
Cancelling out the negative sign, we get;
\[ \Rightarrow \dfrac{{3\left( {1 - 3{{\tan }^2}x} \right)}}{{\left( {3\tan x - {{\tan }^2}x} \right)}}\]
Bringing the numerator trigonometric part to the denominator for better access, we get;
\[ \Rightarrow \dfrac{3}{{\left( {\dfrac{{3\tan x - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}} \right)}}\]
Now, the denominator is in the form of \[\tan 3x\]
\[\tan 3x = \dfrac{{3\tan x - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}\]
Substituting the denominator with the above expression, we get;
\[ \Rightarrow \dfrac{3}{{\tan 3x}}\]
Now, substituting the \[\tan x\] in terms of \[\cot x\], we get;
\[ \Rightarrow 3\cot 3x\]
Since we do not have the final answer in the options, we have the mid value answer which is,
\[ \Rightarrow \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}\]
Therefore, for the given expression, we have;
\[\cot x + \cot \left( {{{60}^ \circ } + x} \right) + \cot \left( {{{120}^ \circ } + x} \right) = \dfrac{{3 - 9{{\tan }^2}x}}{{3\tan x - {{\tan }^3}x}}\]
$\therefore $ The correct option is D.
Note: We have to know that trigonometry is a branch of mathematics that studies relationships between side lengths and angles of triangles. The Greeks focused on the calculations of chords, while mathematics in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such a sine.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
