
The unit vector perpendicular to the vector \[\widehat i - \widehat j\] and\[\widehat i + \widehat j\] forming a right-handed system is
A. \[\widehat k\]
B. \[ - \widehat k\]
C. \[\dfrac{{\widehat i - \widehat j}}{{\sqrt 2 }}\]
D. \[\dfrac{{\widehat i + \widehat j}}{{\sqrt 2 }}\]
Answer
585.9k+ views
Hint: The given unit vector is perpendicular to both the vectors. therefore, use the fact that it will be equal to their cross product divided by the magnitude of the cross product.
Complete step-by-step answer:
Given, the unit vector perpendicular to the vector \[\widehat i - \widehat j\] and\[\widehat i + \widehat j\] forming a right-handed system
Let us consider the given unit vector to be equal to \[\overrightarrow c \]
Also let \[\overrightarrow a = \widehat i - \widehat j\] and \[\overrightarrow b = \widehat i + \widehat j\]
Now, since \[\overrightarrow c \] is a unit vector perpendicular to both \[\overrightarrow a \] and \[\overrightarrow b \]
Therefore, \[\overrightarrow c = \dfrac{{\overrightarrow a \times \overrightarrow b }}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}\]
Now, \[\overrightarrow a \times \overrightarrow b = \left( {\widehat i - \widehat j} \right) \times \left( {\widehat i + \widehat j} \right)\]
\[
= 2\widehat k \\
\Rightarrow \left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {{{(2)}^2}} \\
\Rightarrow \left| {\overrightarrow a \times \overrightarrow b } \right| = 2 \\
\]
Therefore, \[\overrightarrow c = \dfrac{{\overrightarrow a \times \overrightarrow b }}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}\] is given by
\[
\overrightarrow c = \dfrac{{2\widehat k}}{2} \\
\Rightarrow \overrightarrow c = \widehat k \\
\]
Therefore, option (a) \[\widehat k\] is correct.
Note: Whenever a vector is given to be perpendicular to any 2 vectors then it is always equal to their cross product but in case a vector is perpendicular to any one vector then the dot product of the two vectors is 0.
Complete step-by-step answer:
Given, the unit vector perpendicular to the vector \[\widehat i - \widehat j\] and\[\widehat i + \widehat j\] forming a right-handed system
Let us consider the given unit vector to be equal to \[\overrightarrow c \]
Also let \[\overrightarrow a = \widehat i - \widehat j\] and \[\overrightarrow b = \widehat i + \widehat j\]
Now, since \[\overrightarrow c \] is a unit vector perpendicular to both \[\overrightarrow a \] and \[\overrightarrow b \]
Therefore, \[\overrightarrow c = \dfrac{{\overrightarrow a \times \overrightarrow b }}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}\]
Now, \[\overrightarrow a \times \overrightarrow b = \left( {\widehat i - \widehat j} \right) \times \left( {\widehat i + \widehat j} \right)\]
\[
= 2\widehat k \\
\Rightarrow \left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {{{(2)}^2}} \\
\Rightarrow \left| {\overrightarrow a \times \overrightarrow b } \right| = 2 \\
\]
Therefore, \[\overrightarrow c = \dfrac{{\overrightarrow a \times \overrightarrow b }}{{\left| {\overrightarrow a \times \overrightarrow b } \right|}}\] is given by
\[
\overrightarrow c = \dfrac{{2\widehat k}}{2} \\
\Rightarrow \overrightarrow c = \widehat k \\
\]
Therefore, option (a) \[\widehat k\] is correct.
Note: Whenever a vector is given to be perpendicular to any 2 vectors then it is always equal to their cross product but in case a vector is perpendicular to any one vector then the dot product of the two vectors is 0.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

