
The unit of impulse per unit area is the same as that of:
A. Coefficient of viscosity
B. Surface tension
C. Bulk modulus
D. None of the above
Answer
520.8k+ views
Hint: The change in momentum, that is, the product of force and change in time is called the impulse. The ratio of the shearing stress to the velocity gradient of the fluid is called the coefficient of viscosity. Using these definitions and the dimensional formulae, we will answer the question.
Complete answer:
From the given information, we have the data as follows.
The change in momentum, that is, the product of force and change in time is called the impulse. The ratio of the shearing stress to the velocity gradient of the fluid is called the coefficient of viscosity. OR, the measure of the resistance offered by the fluid to deform. The tendency of the liquid surface to shrink into the minimum surface area possible is called the surface tension. The ratio of direct stress to the volumetric strain is called the bulk modulus.
The dimensional formula of impulse per unit area is given as follows.
The formula of impulse and the area is, \[\dfrac{I}{A}=\dfrac{F\times t}{A}\]
The dimensional formula is, \[\begin{align}
& \dfrac{I}{A}=\dfrac{[ML{{T}^{-2}}][T]}{[{{L}^{2}}]} \\
& \therefore \dfrac{I}{A}=[M{{L}^{-1}}{{T}^{-1}}] \\
\end{align}\]
The dimensional formula of surface tension is given as follows.
The formula of the surface tension is, \[\sigma =\dfrac{F}{l}\]
The dimensional formula is, \[\begin{align}
& \sigma =\dfrac{[ML{{T}^{-2}}]}{[L]} \\
& \therefore \sigma =[M{{L}^{0}}{{T}^{-2}}] \\
\end{align}\]
The dimensional formula of the coefficient of viscosity is given as follows.
The formula of the coefficient of viscosity is, \[\eta =\dfrac{F}{A\times \left( {}^{dv}/{}_{dx} \right)}\]
The dimensional formula is, \[\begin{align}
& \eta =\dfrac{[ML{{T}^{-2}}]}{[{{L}^{2}}]\times [{{T}^{-1}}]} \\
& \therefore \eta =[M{{L}^{-1}}{{T}^{-1}}] \\
\end{align}\]
The dimensional formula of the bulk modulus is given as follows.
The formula of the bulk modulus is, \[k=\dfrac{dp}{{}^{dv}/{}_{v}}\]
The dimensional formula is, \[\begin{align}
& k=\dfrac{[M{{L}^{-1}}{{T}^{-2}}]}{[{{M}^{0}}{{L}^{0}}{{T}^{0}}]} \\
& \therefore k=[M{{L}^{-1}}{{T}^{-2}}] \\
\end{align}\]
\[\therefore \] The unit of impulse per unit area is the same as that of the coefficient of viscosity.
Thus, option (A) is correct.
Note:
The coefficient of viscosity is a property of the fluid. The bulk modulus is a property of a material that deals with elasticity in terms of volume. The higher the cohesive nature of the molecules of the fluid, the higher will be the surface tension of the fluid.
Complete answer:
From the given information, we have the data as follows.
The change in momentum, that is, the product of force and change in time is called the impulse. The ratio of the shearing stress to the velocity gradient of the fluid is called the coefficient of viscosity. OR, the measure of the resistance offered by the fluid to deform. The tendency of the liquid surface to shrink into the minimum surface area possible is called the surface tension. The ratio of direct stress to the volumetric strain is called the bulk modulus.
The dimensional formula of impulse per unit area is given as follows.
The formula of impulse and the area is, \[\dfrac{I}{A}=\dfrac{F\times t}{A}\]
The dimensional formula is, \[\begin{align}
& \dfrac{I}{A}=\dfrac{[ML{{T}^{-2}}][T]}{[{{L}^{2}}]} \\
& \therefore \dfrac{I}{A}=[M{{L}^{-1}}{{T}^{-1}}] \\
\end{align}\]
The dimensional formula of surface tension is given as follows.
The formula of the surface tension is, \[\sigma =\dfrac{F}{l}\]
The dimensional formula is, \[\begin{align}
& \sigma =\dfrac{[ML{{T}^{-2}}]}{[L]} \\
& \therefore \sigma =[M{{L}^{0}}{{T}^{-2}}] \\
\end{align}\]
The dimensional formula of the coefficient of viscosity is given as follows.
The formula of the coefficient of viscosity is, \[\eta =\dfrac{F}{A\times \left( {}^{dv}/{}_{dx} \right)}\]
The dimensional formula is, \[\begin{align}
& \eta =\dfrac{[ML{{T}^{-2}}]}{[{{L}^{2}}]\times [{{T}^{-1}}]} \\
& \therefore \eta =[M{{L}^{-1}}{{T}^{-1}}] \\
\end{align}\]
The dimensional formula of the bulk modulus is given as follows.
The formula of the bulk modulus is, \[k=\dfrac{dp}{{}^{dv}/{}_{v}}\]
The dimensional formula is, \[\begin{align}
& k=\dfrac{[M{{L}^{-1}}{{T}^{-2}}]}{[{{M}^{0}}{{L}^{0}}{{T}^{0}}]} \\
& \therefore k=[M{{L}^{-1}}{{T}^{-2}}] \\
\end{align}\]
\[\therefore \] The unit of impulse per unit area is the same as that of the coefficient of viscosity.
Thus, option (A) is correct.
Note:
The coefficient of viscosity is a property of the fluid. The bulk modulus is a property of a material that deals with elasticity in terms of volume. The higher the cohesive nature of the molecules of the fluid, the higher will be the surface tension of the fluid.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

