
The triple product \[\left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\vec b \times \left( {\vec c \times \vec d} \right)} \right)} \right]\] simplifies to
A.\[\left( {\vec b\vec d} \right)\left[ {\vec d\vec a\vec c} \right]\]
B.\[\left( {\vec b\vec c} \right)\left[ {\vec a\vec b\vec d} \right]\]
C.\[\left( {\vec b\vec a} \right)\left[ {\vec a\vec b\vec d} \right]\]
D.None of these
Answer
564.6k+ views
Hint: Here, we will rewrite the given equation using the cross product rule, \[a \times \left( {b \times c} \right) = \left( {a \cdot c} \right)b - \left( {a \cdot b} \right)c\] and then simplify it. Then we will use that if in a scalar triple product, two same variables are there, then the value of products is 0 to find the required value.
Complete step-by-step answer:
We are given that \[\left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\vec b \times \left( {\vec c \times \vec d} \right)} \right)} \right]\].
Rewriting the given equation using the cross product rule, \[a \times \left( {b \times c} \right) = \left( {a \cdot c} \right)b - \left( {a \cdot b} \right)c\], we get
\[ \Rightarrow \left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\left( {\vec b \cdot \vec d} \right)\vec c - \left( {\vec b \cdot \vec c} \right)\vec d} \right)} \right]\]
Simplifying the above equation by open the open brackets, we get
\[
\Rightarrow \left( {\vec d + \vec a} \right)\left[ {\left( {\vec b \cdot \vec d} \right)\left( {\vec a \times \vec c} \right) - \left( {\vec b \cdot \vec c} \right)\left( {\vec a \times \vec d} \right)} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + \vec a \cdot \vec a \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {\vec a \cdot \vec d \cdot \vec d + \vec a \cdot \vec a \cdot \vec d} \right] \\
\]
We know that if in a scalar triple product, two same variables are there, then the value of products is 0.
So, the above expression becomes
\[
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + 0 \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {\vec a \cdot 0 + 0 \cdot \vec d} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + 0} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {0 + 0} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left( 0 \right) \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] - 0 \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] \\
\]
Hence, option A is correct.
Note: We know that a dot product is the product between components in parallel and cross product is the product between components in perpendicular. These are because of the orthogonal direction in a product only one of the two components (parallel & perpendicular) takes part. The knowledge of both the products of vectors is really important in this question.
Complete step-by-step answer:
We are given that \[\left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\vec b \times \left( {\vec c \times \vec d} \right)} \right)} \right]\].
Rewriting the given equation using the cross product rule, \[a \times \left( {b \times c} \right) = \left( {a \cdot c} \right)b - \left( {a \cdot b} \right)c\], we get
\[ \Rightarrow \left( {\vec d + \vec a} \right)\left[ {\vec a \times \left( {\left( {\vec b \cdot \vec d} \right)\vec c - \left( {\vec b \cdot \vec c} \right)\vec d} \right)} \right]\]
Simplifying the above equation by open the open brackets, we get
\[
\Rightarrow \left( {\vec d + \vec a} \right)\left[ {\left( {\vec b \cdot \vec d} \right)\left( {\vec a \times \vec c} \right) - \left( {\vec b \cdot \vec c} \right)\left( {\vec a \times \vec d} \right)} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + \vec a \cdot \vec a \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {\vec a \cdot \vec d \cdot \vec d + \vec a \cdot \vec a \cdot \vec d} \right] \\
\]
We know that if in a scalar triple product, two same variables are there, then the value of products is 0.
So, the above expression becomes
\[
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + 0 \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {\vec a \cdot 0 + 0 \cdot \vec d} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c + 0} \right] - \left( {\vec b \cdot \vec c} \right)\left[ {0 + 0} \right] \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] - \left( {\vec b \cdot \vec c} \right)\left( 0 \right) \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] - 0 \\
\Rightarrow \left( {\vec b \cdot \vec d} \right)\left[ {\vec d \cdot \vec a \cdot \vec c} \right] \\
\]
Hence, option A is correct.
Note: We know that a dot product is the product between components in parallel and cross product is the product between components in perpendicular. These are because of the orthogonal direction in a product only one of the two components (parallel & perpendicular) takes part. The knowledge of both the products of vectors is really important in this question.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

What is Environment class 11 chemistry CBSE

10 examples of diffusion in everyday life

Give four adaptations shown by flowers pollinated by class 11 biology CBSE

