
The trigonometric function $ \sin 4\theta $ can be written as:
A. $ 4\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)\sqrt{1-{{\sin }^{2}}\theta } $
B. $ 2\sin \theta \cos \theta {{\sin }^{2}}\theta $
C. $ 4\sin \theta -6{{\sin }^{3}}\theta $
D. $ 2\sin 2\theta $
Answer
553.8k+ views
Hint: Use the following identities to convert from terms involving $ 4\theta $ to $ 2\theta $ and to $ \theta $ .
$ \sin (A\pm B)=\sin A\cos B\pm \sin B\cos A $
$ \cos (A\pm B)=\cos A\cos B\mp \sin A\sin B $
Recall that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ . Use this fact to convert the terms involving $ \cos \theta $ into $ \sin \theta $ .
Simplify until we are left with terms containing only $ \sin \theta $ .
Complete step-by-step answer:
We can write $ \sin 4\theta =\sin (2\theta +2\theta ) $ .
Using the identity $ \sin (A+B)=\sin A\cos B+\sin B\cos A $ , we get:
= $ \sin 2\theta \cos 2\theta +\sin 2\theta \cos 2\theta $
= $ 2\sin 2\theta \cos 2\theta $
Writing $ 2\theta $ as $ \theta + \theta $ ; we get
= $ 2\sin (\theta +\theta )\cos (\theta +\theta ) $
Using the $ \sin (A+B)=\sin A\cos B+\sin B\cos A $ and $ \cos (A+B)=\cos A\cos B-\sin A\sin B $ , we get:
= $ 2\left[ 2\sin \theta \cos \theta \left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right) \right] $
Which can be written as:
= $ 4\sin \theta \sqrt{{{\cos }^{2}}\theta }\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right) $
Using the identity $ {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ , we get:
= $ 4\sin \theta \sqrt{1-{{\sin }^{2}}\theta }\left( 1-{{\sin }^{2}}\theta -{{\sin }^{2}}\theta \right) $
= $ 4\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)\sqrt{1-{{\sin }^{2}}\theta } $
Therefore, the correct answer option is A. $ 4\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)\sqrt{1-{{\sin }^{2}}\theta } $ .
So, the correct answer is “Option A”.
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$ \sin \theta =\dfrac{P}{H} $ , $ \cos \theta =\dfrac{B}{H} $ , $ \tan \theta =\dfrac{P}{B} $
$ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ , $ \cot \theta =\dfrac{\cos \theta }{\sin \theta } $
$ \csc \theta =\dfrac{1}{\sin \theta } $ , $ \sec \theta =\dfrac{1}{\cos \theta } $ , $ \tan \theta =\dfrac{1}{\cot \theta } $
Using the Pythagoras' theorem:
$ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $
$ {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $
$ 1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $
Sum-Product formula:
$ \sin 2A+\sin 2B=2\sin (A+B)\cos (A-B) $
$ \sin 2A-\sin 2B=2\cos (A+B)\sin (A-B) $
$ \cos 2A+\cos 2B=2\cos (A+B)\cos (A-B) $
$ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $
$ \sin (A\pm B)=\sin A\cos B\pm \sin B\cos A $
$ \cos (A\pm B)=\cos A\cos B\mp \sin A\sin B $
Recall that $ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $ . Use this fact to convert the terms involving $ \cos \theta $ into $ \sin \theta $ .
Simplify until we are left with terms containing only $ \sin \theta $ .
Complete step-by-step answer:
We can write $ \sin 4\theta =\sin (2\theta +2\theta ) $ .
Using the identity $ \sin (A+B)=\sin A\cos B+\sin B\cos A $ , we get:
= $ \sin 2\theta \cos 2\theta +\sin 2\theta \cos 2\theta $
= $ 2\sin 2\theta \cos 2\theta $
Writing $ 2\theta $ as $ \theta + \theta $ ; we get
= $ 2\sin (\theta +\theta )\cos (\theta +\theta ) $
Using the $ \sin (A+B)=\sin A\cos B+\sin B\cos A $ and $ \cos (A+B)=\cos A\cos B-\sin A\sin B $ , we get:
= $ 2\left[ 2\sin \theta \cos \theta \left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right) \right] $
Which can be written as:
= $ 4\sin \theta \sqrt{{{\cos }^{2}}\theta }\left( {{\cos }^{2}}\theta -{{\sin }^{2}}\theta \right) $
Using the identity $ {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta $ , we get:
= $ 4\sin \theta \sqrt{1-{{\sin }^{2}}\theta }\left( 1-{{\sin }^{2}}\theta -{{\sin }^{2}}\theta \right) $
= $ 4\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)\sqrt{1-{{\sin }^{2}}\theta } $
Therefore, the correct answer option is A. $ 4\sin \theta \left( 1-2{{\sin }^{2}}\theta \right)\sqrt{1-{{\sin }^{2}}\theta } $ .
So, the correct answer is “Option A”.
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$ \sin \theta =\dfrac{P}{H} $ , $ \cos \theta =\dfrac{B}{H} $ , $ \tan \theta =\dfrac{P}{B} $
$ \tan \theta =\dfrac{\sin \theta }{\cos \theta } $ , $ \cot \theta =\dfrac{\cos \theta }{\sin \theta } $
$ \csc \theta =\dfrac{1}{\sin \theta } $ , $ \sec \theta =\dfrac{1}{\cos \theta } $ , $ \tan \theta =\dfrac{1}{\cot \theta } $
Using the Pythagoras' theorem:
$ {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 $
$ {{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $
$ 1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $
Sum-Product formula:
$ \sin 2A+\sin 2B=2\sin (A+B)\cos (A-B) $
$ \sin 2A-\sin 2B=2\cos (A+B)\sin (A-B) $
$ \cos 2A+\cos 2B=2\cos (A+B)\cos (A-B) $
$ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

