
The triangular side walls of a flyover have been used for advertisements. The sides of walls are$122\text{ m, 22m }\!\!\And\!\!\text{ 120m}$ (see figure 12.9). The advertisements yield the earning of Rs 5000 per${{\text{m}}^{2}}$ year. A company hired one of its walls for 3 months. How much rent did it pay?
Answer
555k+ views
Hint:
We use Heron's formula for solving the problem. Three sides are given. Also after finding the area cost of advertisement is given we convert the cost for 3 months and multiplied it by area of triangle to get the total rent
Formula used:
Area of triangle$=\sqrt{\text{s}\left( \text{s}-\text{a} \right)\left( \text{s}-\text{b} \right)\left( \text{s}-\text{c} \right)}$
S=Semi perimeter:$\text{s}=\dfrac{\text{a}+\text{b+c}}{2}$
Complete step by step solution:
The sides of triangle are $122\text{ m, 22m }\!\!\And\!\!\text{ 120m}$
Let a=$122\text{ m}$
b=$120\text{ m}$
c=$22\text{ m}$
$\begin{align}
& \text{s}=\dfrac{\text{a}+\text{b+c}}{2} \\
& =\dfrac{122+120+22}{2} \\
& =\dfrac{264}{2} \\
& =132\text{ m} \\
\end{align}$
Area of triangular wall$=\sqrt{\text{s}\left( \text{s}-\text{a} \right)\left( \text{s}-\text{b} \right)\left( \text{s}-\text{c} \right)}$
$\begin{align}
& =\sqrt{132\left( 132-122 \right)\left( 132-120 \right)\left( 132-22 \right)} \\
& =\sqrt{132\times 10\times 12\times 110} \\
& =\sqrt{11\times 12\times 10\times 12\times 11\times 10} \\
\end{align}$
$\begin{align}
& =\sqrt{11\times 12\times 12\times 12\times 10\times 10} \\
& =\sqrt{{{\left( 11\times 12\times 10 \right)}^{2}}} \\
& =11\times 12\times 10 \\
& =1320\text{ m} \\
\end{align}$
Rent of $1\text{ }{{\text{m}}^{2}}$ area$=5000\text{ Rs}$ per year
Rent of $1\text{ }{{\text{m}}^{2}}$ area$=\dfrac{5000}{12}\text{ Rs}$ per month=$\dfrac{1250}{3}\text{ Rs}$per month
For 3 month rent of $1\text{ }{{\text{m}}^{2}}$ area$\dfrac{1250}{3}\text{ }\times \text{3 Rs}$ per quarter=1250
So total rent of $1320\text{ }{{\text{m}}^{2}}$ area for 3 months$=1250\times 320$
$=1650000\text{ Rs}$
So total amount company has to pay as rent$=1650000\text{ Rs}$
Additional information: if the triangle is right angled triangle then we can directly used the formula
Area of triangle$=\dfrac{1}{2}\times \text{base}\times \text{altitude}$
Note:
The knowledge of the basics formula is important for students to solve the question. Also they should know how to convert in per month & in per quarter.
We use Heron's formula for solving the problem. Three sides are given. Also after finding the area cost of advertisement is given we convert the cost for 3 months and multiplied it by area of triangle to get the total rent
Formula used:
Area of triangle$=\sqrt{\text{s}\left( \text{s}-\text{a} \right)\left( \text{s}-\text{b} \right)\left( \text{s}-\text{c} \right)}$
S=Semi perimeter:$\text{s}=\dfrac{\text{a}+\text{b+c}}{2}$
Complete step by step solution:
The sides of triangle are $122\text{ m, 22m }\!\!\And\!\!\text{ 120m}$
Let a=$122\text{ m}$
b=$120\text{ m}$
c=$22\text{ m}$
$\begin{align}
& \text{s}=\dfrac{\text{a}+\text{b+c}}{2} \\
& =\dfrac{122+120+22}{2} \\
& =\dfrac{264}{2} \\
& =132\text{ m} \\
\end{align}$
Area of triangular wall$=\sqrt{\text{s}\left( \text{s}-\text{a} \right)\left( \text{s}-\text{b} \right)\left( \text{s}-\text{c} \right)}$
$\begin{align}
& =\sqrt{132\left( 132-122 \right)\left( 132-120 \right)\left( 132-22 \right)} \\
& =\sqrt{132\times 10\times 12\times 110} \\
& =\sqrt{11\times 12\times 10\times 12\times 11\times 10} \\
\end{align}$
$\begin{align}
& =\sqrt{11\times 12\times 12\times 12\times 10\times 10} \\
& =\sqrt{{{\left( 11\times 12\times 10 \right)}^{2}}} \\
& =11\times 12\times 10 \\
& =1320\text{ m} \\
\end{align}$
Rent of $1\text{ }{{\text{m}}^{2}}$ area$=5000\text{ Rs}$ per year
Rent of $1\text{ }{{\text{m}}^{2}}$ area$=\dfrac{5000}{12}\text{ Rs}$ per month=$\dfrac{1250}{3}\text{ Rs}$per month
For 3 month rent of $1\text{ }{{\text{m}}^{2}}$ area$\dfrac{1250}{3}\text{ }\times \text{3 Rs}$ per quarter=1250
So total rent of $1320\text{ }{{\text{m}}^{2}}$ area for 3 months$=1250\times 320$
$=1650000\text{ Rs}$
So total amount company has to pay as rent$=1650000\text{ Rs}$
Additional information: if the triangle is right angled triangle then we can directly used the formula
Area of triangle$=\dfrac{1}{2}\times \text{base}\times \text{altitude}$
Note:
The knowledge of the basics formula is important for students to solve the question. Also they should know how to convert in per month & in per quarter.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

