
The triangle ABC is defined by the vertices $A\left( 1,-2,2 \right),B\left( 1,4,0 \right)$ and $C\left( -4,1,1 \right)$ If $M$ be the foot of the altitude drawn from the vertex B to side AC, then $\overrightarrow{BM}=$ \[\]
A. $\left( \dfrac{-20}{7},\dfrac{-30}{7},\dfrac{10}{7} \right)$\[\]
B.$\left( -20,-30,10 \right)$\[\]
C.$\left( 2,3,-1 \right)$\[\]
D.$\left( 1,2,3 \right)$\[\]
Answer
564.9k+ views
Hint: We know that the ray from point $P\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)$ and $Q\left( {{x}_{2}},{{y}_{2}},{{z}_{2}} \right)$ can be represented as the vector $\overrightarrow{PQ}=\left( {{x}_{2}}-{{x}_{1}} \right)\hat{i}+\left( {{y}_{2}}-{{y}_{1}} \right)\hat{j}+\left( {{z}_{2}}-{{z}_{1}} \right)\hat{k}$. We represent the sides as the vectors$\overrightarrow{AB},\overrightarrow{BC},\overrightarrow{CA}$. We find position vector point on the line as $\overrightarrow{a}+\lambda \overrightarrow{d}$ where $\overrightarrow{a}$ vector is the potion vector of vertex C and $\overrightarrow{d}=\overrightarrow{CA}$ as the direction vector. We use the perpendicular condition of vectors $\overrightarrow{BM}$ and $\overrightarrow{CA}$ to find $\lambda $. \[\]
Complete step-by-step solution:’
We are given the coordinate of the vertices $A\left( 1,-2,2 \right),B\left( 1,4,0 \right)$ and $C\left( -4,1,1 \right)$. Let us represent the sides as vectors. We have;
\[\begin{align}
& \overrightarrow{AB}=\left( 1-1 \right)\hat{i}+\left( 4-\left( -2 \right) \right)\hat{j}+\left( 0-\left( 2 \right) \right)\hat{k}=6\hat{j} -2\hat{k} \\
& \overrightarrow{BC}=\left( -4-1 \right)\hat{i}+\left( 1-4 \right)\hat{j}+\left( 1-\left( 0 \right) \right)\hat{k}=-5\hat{j}-3\hat{j}+1 \hat{k} \\
& \overrightarrow{CA}=\left( 1-\left( -4 \right) \right)\hat{i}+\left( -2-1 \right)\hat{j}+\left( 2-1 \right)\hat{k}=5\hat{i}-3\hat{j}+\hat{k} \\
\end{align}\]
We know that vector equation of given by $\overrightarrow{a}+\lambda \overrightarrow{d}$ where $\overrightarrow{a}$ is position vector of any point on the line and $\overrightarrow{d}$ is the direction parallel vector to the line. The vector $\overrightarrow{a}+\lambda \overrightarrow{d}$ is also the position vector of all points on the line.
Let us observe the given triangle ABC. The position vector of vertex C is $\overrightarrow{a}=-4\hat{i}+\hat{j}+\hat{k}$ and the direction vector from point C is $\overrightarrow{CA}$ that is $\overrightarrow{d}=\overrightarrow{CA}=5\hat{i}-3\hat{j}+\hat{k}$. So the position vector any point on the line AC is
\[\begin{align}
& \overrightarrow{a}+\lambda \overrightarrow{d}=-4\hat{i}+\hat{j}+\hat{k}+\lambda \left( 5\hat{i}-3\hat{j}+\hat{k} \right) \\
& \Rightarrow \overrightarrow{a}+\lambda \overrightarrow{d}=\left( -4+5\lambda \right)\hat{i}+\left( 1-3\lambda \right)\hat{j}+\left( 1+\lambda \right)\hat{k} \\
\end{align}\]
We are given M is the foot of the altitude drawn from the vertex B to side AC. The above vector is also the position vector of M since M lies on line AC. So the coordinates of the point M can be represented as $M\left( -4+5\lambda ,1-3\lambda ,1+\lambda \right)$ . We can represented the given altitude BM as the vector
\[\begin{align}
& \overrightarrow{BM}=\left( -4+5\lambda -1 \right)\hat{i}+\left( 1-3\lambda -4 \right)\hat{j}+\left( 1+\lambda \right)\hat{k} \\
& \Rightarrow \overrightarrow{BM}=\left( -5+5\lambda \right)\hat{i}+\left( -3-3\lambda \right)\hat{j}+\left( 1+\lambda \right)\hat{k} \\
\end{align}\]
Since $\overrightarrow{BM}$and $\overrightarrow{CA}=5\hat{i}-3\hat{j}+\hat{k}$ are perpendicular to each other we have
\[\begin{align}
& 5\left( 5\lambda - 5 \right)+-3\left( -3-3\lambda \right)+1\left( 1+\lambda \right)=0 \\
& \Rightarrow 25\lambda -25+9+9\lambda +1+\lambda =0 \\
& \Rightarrow 35\lambda -15=0 \\
& \Rightarrow \lambda =\dfrac{15}{35}=\dfrac{3}{7} \\
\end{align}\]
So the required vector is
\[\begin{align}
& \overrightarrow{BM}=\left( -5+5\cdot \dfrac{3}{7} \right)\hat{i}+\left( -3-3\cdot \dfrac{3}{7} \right)\hat{j}+\left( 1+\dfrac{3}{7} \right)\hat{k} \\
& \Rightarrow \overrightarrow{BM}=\left( \dfrac{-20}{7} \right)\hat{i}+\left( -\dfrac{30}{7} \right)\hat{j}+\left( \dfrac{10}{7} \right)\hat{k} \\
\end{align}\]
So the correct option is A.
Note: We note that if two vectors in space are represented in component forms $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ then their perpendicular condition is given by ${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}=0$. We can alternatively solve using projection. We find $\overrightarrow{BM}$ as the component of $\overrightarrow{AB}$ perpendicular to $\overrightarrow{AC}$ which $\overrightarrow{BM}=\overrightarrow{AB}-\dfrac{\left( \overrightarrow{AB}\cdot \overrightarrow{AC} \right)\overrightarrow{AC}}{{{\left( \overrightarrow{AC} \right)}^{2}}}$.
Complete step-by-step solution:’
We are given the coordinate of the vertices $A\left( 1,-2,2 \right),B\left( 1,4,0 \right)$ and $C\left( -4,1,1 \right)$. Let us represent the sides as vectors. We have;
\[\begin{align}
& \overrightarrow{AB}=\left( 1-1 \right)\hat{i}+\left( 4-\left( -2 \right) \right)\hat{j}+\left( 0-\left( 2 \right) \right)\hat{k}=6\hat{j} -2\hat{k} \\
& \overrightarrow{BC}=\left( -4-1 \right)\hat{i}+\left( 1-4 \right)\hat{j}+\left( 1-\left( 0 \right) \right)\hat{k}=-5\hat{j}-3\hat{j}+1 \hat{k} \\
& \overrightarrow{CA}=\left( 1-\left( -4 \right) \right)\hat{i}+\left( -2-1 \right)\hat{j}+\left( 2-1 \right)\hat{k}=5\hat{i}-3\hat{j}+\hat{k} \\
\end{align}\]
We know that vector equation of given by $\overrightarrow{a}+\lambda \overrightarrow{d}$ where $\overrightarrow{a}$ is position vector of any point on the line and $\overrightarrow{d}$ is the direction parallel vector to the line. The vector $\overrightarrow{a}+\lambda \overrightarrow{d}$ is also the position vector of all points on the line.
Let us observe the given triangle ABC. The position vector of vertex C is $\overrightarrow{a}=-4\hat{i}+\hat{j}+\hat{k}$ and the direction vector from point C is $\overrightarrow{CA}$ that is $\overrightarrow{d}=\overrightarrow{CA}=5\hat{i}-3\hat{j}+\hat{k}$. So the position vector any point on the line AC is
\[\begin{align}
& \overrightarrow{a}+\lambda \overrightarrow{d}=-4\hat{i}+\hat{j}+\hat{k}+\lambda \left( 5\hat{i}-3\hat{j}+\hat{k} \right) \\
& \Rightarrow \overrightarrow{a}+\lambda \overrightarrow{d}=\left( -4+5\lambda \right)\hat{i}+\left( 1-3\lambda \right)\hat{j}+\left( 1+\lambda \right)\hat{k} \\
\end{align}\]
We are given M is the foot of the altitude drawn from the vertex B to side AC. The above vector is also the position vector of M since M lies on line AC. So the coordinates of the point M can be represented as $M\left( -4+5\lambda ,1-3\lambda ,1+\lambda \right)$ . We can represented the given altitude BM as the vector
\[\begin{align}
& \overrightarrow{BM}=\left( -4+5\lambda -1 \right)\hat{i}+\left( 1-3\lambda -4 \right)\hat{j}+\left( 1+\lambda \right)\hat{k} \\
& \Rightarrow \overrightarrow{BM}=\left( -5+5\lambda \right)\hat{i}+\left( -3-3\lambda \right)\hat{j}+\left( 1+\lambda \right)\hat{k} \\
\end{align}\]
Since $\overrightarrow{BM}$and $\overrightarrow{CA}=5\hat{i}-3\hat{j}+\hat{k}$ are perpendicular to each other we have
\[\begin{align}
& 5\left( 5\lambda - 5 \right)+-3\left( -3-3\lambda \right)+1\left( 1+\lambda \right)=0 \\
& \Rightarrow 25\lambda -25+9+9\lambda +1+\lambda =0 \\
& \Rightarrow 35\lambda -15=0 \\
& \Rightarrow \lambda =\dfrac{15}{35}=\dfrac{3}{7} \\
\end{align}\]
So the required vector is
\[\begin{align}
& \overrightarrow{BM}=\left( -5+5\cdot \dfrac{3}{7} \right)\hat{i}+\left( -3-3\cdot \dfrac{3}{7} \right)\hat{j}+\left( 1+\dfrac{3}{7} \right)\hat{k} \\
& \Rightarrow \overrightarrow{BM}=\left( \dfrac{-20}{7} \right)\hat{i}+\left( -\dfrac{30}{7} \right)\hat{j}+\left( \dfrac{10}{7} \right)\hat{k} \\
\end{align}\]
So the correct option is A.
Note: We note that if two vectors in space are represented in component forms $\overrightarrow{a}={{a}_{1}}\hat{i}+{{a}_{2}}\hat{j}+{{a}_{3}}\hat{k}$ and $\overrightarrow{b}={{b}_{1}}\hat{i}+{{b}_{2}}\hat{j}+{{b}_{3}}\hat{k}$ then their perpendicular condition is given by ${{a}_{1}}{{b}_{1}}+{{a}_{2}}{{b}_{2}}+{{a}_{3}}{{b}_{3}}=0$. We can alternatively solve using projection. We find $\overrightarrow{BM}$ as the component of $\overrightarrow{AB}$ perpendicular to $\overrightarrow{AC}$ which $\overrightarrow{BM}=\overrightarrow{AB}-\dfrac{\left( \overrightarrow{AB}\cdot \overrightarrow{AC} \right)\overrightarrow{AC}}{{{\left( \overrightarrow{AC} \right)}^{2}}}$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

