
The transverse axis of a hyperbola is of length 2a and a vertex divides the segment of the axis between the centre and the corresponding focus in the ratio 2:1. The equation of the hyperbola is
\[
\left( a \right)4{x^2} - 5{y^2} = 4{a^2} \\
\left( b \right)4{x^2} - 5{y^2} = 5{a^2} \\
\left( c \right)5{x^2} - 4{y^2} = 4{a^2} \\
\left( d \right)5{x^2} - 4{y^2} = 5{a^2} \\
\]
Answer
616.8k+ views
Hint-In this question, we use the property of the hyperbola. We know the eccentricity of hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$ is $e = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$ where $a$ is length of semi transverse axis and $b$ is length of semi conjugate axis. To find eccentricity(e) use section formula and find x coordinate.
Complete step-by-step answer:
Given, length of transverse axis is 2a so the length of semi transverse axis is a.
Let equation of hyperbola is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1...............\left( 1 \right)$
From figure, coordinate of vertex A(a, 0), Focus B(ae, 0) and centre O(0, 0).
Now, vertex A (a, 0) divides the line joining between focus B (ae, 0) and centre O (0, 0) in the ratio 2:1.
We have to apply section formula,
$x = \dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}}{\text{ and y}} = \dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}{\text{ }}$ where $\left( {x,y} \right)$ divide the line segment joining between the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ in the ratio ${m_1}:{m_2}$ .
$
\Rightarrow a = \dfrac{{2ae + 1 \times 0}}{{2 + 1}} \\
\Rightarrow a = \dfrac{{2ae}}{3} \\
\Rightarrow e = \dfrac{3}{2} \\
$
Now, use $e = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$
$ \Rightarrow \dfrac{3}{2} = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$
Squaring both sides,
$ \Rightarrow \dfrac{9}{4} = \dfrac{{{a^2} + {b^2}}}{{{a^2}}}$
Cross multiplication,
$
\Rightarrow 9{a^2} = 4\left( {{a^2} + {b^2}} \right) \\
\Rightarrow 9{a^2} = 4{a^2} + 4{b^2} \\
\Rightarrow 5{a^2} = 4{b^2} \\
\Rightarrow {b^2} = \dfrac{{5{a^2}}}{4} \\
$
Put the value of b2 in (1) equation,
$
\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{\dfrac{{5{a^2}}}{4}}} = 1 \\
\Rightarrow \dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{4{y^2}}}{{5{a^2}}} = 1 \\
\Rightarrow 5{x^2} - 4{y^2} = 5{a^2} \\
$
Hence, the equation of hyperbola is $5{x^2} - 4{y^2} = 5{a^2}$
So, the correct option is (d).
Note- In such types of problems we should remember the coordinates of vertex, Focus and centre of hyperbola and then find the value of eccentricity with the help of these coordinates and section formula. Then after using the eccentricity formula we can easily make a relation between a and b.
Complete step-by-step answer:
Given, length of transverse axis is 2a so the length of semi transverse axis is a.
Let equation of hyperbola is $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1...............\left( 1 \right)$
From figure, coordinate of vertex A(a, 0), Focus B(ae, 0) and centre O(0, 0).
Now, vertex A (a, 0) divides the line joining between focus B (ae, 0) and centre O (0, 0) in the ratio 2:1.
We have to apply section formula,
$x = \dfrac{{{m_1}{x_2} + {m_2}{x_1}}}{{{m_1} + {m_2}}}{\text{ and y}} = \dfrac{{{m_1}{y_2} + {m_2}{y_1}}}{{{m_1} + {m_2}}}{\text{ }}$ where $\left( {x,y} \right)$ divide the line segment joining between the points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ in the ratio ${m_1}:{m_2}$ .
$
\Rightarrow a = \dfrac{{2ae + 1 \times 0}}{{2 + 1}} \\
\Rightarrow a = \dfrac{{2ae}}{3} \\
\Rightarrow e = \dfrac{3}{2} \\
$
Now, use $e = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$
$ \Rightarrow \dfrac{3}{2} = \dfrac{{\sqrt {{a^2} + {b^2}} }}{a}$
Squaring both sides,
$ \Rightarrow \dfrac{9}{4} = \dfrac{{{a^2} + {b^2}}}{{{a^2}}}$
Cross multiplication,
$
\Rightarrow 9{a^2} = 4\left( {{a^2} + {b^2}} \right) \\
\Rightarrow 9{a^2} = 4{a^2} + 4{b^2} \\
\Rightarrow 5{a^2} = 4{b^2} \\
\Rightarrow {b^2} = \dfrac{{5{a^2}}}{4} \\
$
Put the value of b2 in (1) equation,
$
\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{\dfrac{{5{a^2}}}{4}}} = 1 \\
\Rightarrow \dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{4{y^2}}}{{5{a^2}}} = 1 \\
\Rightarrow 5{x^2} - 4{y^2} = 5{a^2} \\
$
Hence, the equation of hyperbola is $5{x^2} - 4{y^2} = 5{a^2}$
So, the correct option is (d).
Note- In such types of problems we should remember the coordinates of vertex, Focus and centre of hyperbola and then find the value of eccentricity with the help of these coordinates and section formula. Then after using the eccentricity formula we can easily make a relation between a and b.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

