
The Transformer voltage induced in the secondary coil of a transformer is mainly due to:
A. a varying electric field
B. a varying magnetic field
C. the vibrations of the primary coil
D. the iron core of the transformer
Answer
483.6k+ views
Hint-A transformer is a device that uses the process of electromagnetic induction to transfer electrical energy from one circuit to another. It can be used to increase the level of voltage or decrease the level of voltage between circuits.
Principle of transformer: A transformer works on the principle of mutual induction. When there is a change in current in the primary coil the magnetic flux linked with the secondary coil changes which induces an EMF in the secondary coil.
Step by step solution:
A transformer is a device that uses the process of electromagnetic induction to transfer electrical energy from one circuit to another. It can be used to increase the level of voltage or decrease the level of voltage between circuits.
A basic transformer consists of four primary parts.
1. input connection
2. output connection
3. core
4. the windings.
Transformers have two windings, a primary winding and a secondary winding. The number of turns in the primary winding is denoted as ${N_P}$.The number of turns in the secondary winding is denoted as ${N_S}$. Voltage given to the primary winding is represented as ${V_P}$ and voltage that we get at the secondary winding is represented as ${V_S}$. Then, the transformer equation is given by
$\dfrac{{{V_P}}}{{{V_S}}} = \dfrac{{{N_P}}}{{{N_S}}}$
Principle of transformer: A transformer works on the principle of mutual induction. When there is a change in current in the primary coil the magnetic flux linked with the secondary coil changes which induces an EMF in the secondary coil.
The working of the transformer itself depends on change in current in the primary coil. DC sources which produce a constant current cannot be used since they cannot produce a varying magnetic field. Therefore, EMF cannot be induced in the secondary coil
Thus, it is the change in magnetic field that induces emf in the secondary coil. So, we can say that the transformer voltage induced in the secondary coil of a transformer is mainly due to a varying magnetic field.
So, the correct answer is option B.
Note: A transformer can work only on AC and the output is also an AC voltage which will be stepped up or down depending upon the number of turns in the primary and secondary coil. In step up transformers we get a higher AC voltage at the output than the input AC voltage. In such a type of transformer, the number of turns in the secondary winding will be greater than the number of turns in the primary winding. In the step down transformer we get a low AC voltage at the output. In such a transformer the number of turns in the secondary winding will be less than the number of turns in the primary winding.
Principle of transformer: A transformer works on the principle of mutual induction. When there is a change in current in the primary coil the magnetic flux linked with the secondary coil changes which induces an EMF in the secondary coil.
Step by step solution:
A transformer is a device that uses the process of electromagnetic induction to transfer electrical energy from one circuit to another. It can be used to increase the level of voltage or decrease the level of voltage between circuits.
A basic transformer consists of four primary parts.
1. input connection
2. output connection
3. core
4. the windings.
Transformers have two windings, a primary winding and a secondary winding. The number of turns in the primary winding is denoted as ${N_P}$.The number of turns in the secondary winding is denoted as ${N_S}$. Voltage given to the primary winding is represented as ${V_P}$ and voltage that we get at the secondary winding is represented as ${V_S}$. Then, the transformer equation is given by
$\dfrac{{{V_P}}}{{{V_S}}} = \dfrac{{{N_P}}}{{{N_S}}}$
Principle of transformer: A transformer works on the principle of mutual induction. When there is a change in current in the primary coil the magnetic flux linked with the secondary coil changes which induces an EMF in the secondary coil.
The working of the transformer itself depends on change in current in the primary coil. DC sources which produce a constant current cannot be used since they cannot produce a varying magnetic field. Therefore, EMF cannot be induced in the secondary coil
Thus, it is the change in magnetic field that induces emf in the secondary coil. So, we can say that the transformer voltage induced in the secondary coil of a transformer is mainly due to a varying magnetic field.
So, the correct answer is option B.
Note: A transformer can work only on AC and the output is also an AC voltage which will be stepped up or down depending upon the number of turns in the primary and secondary coil. In step up transformers we get a higher AC voltage at the output than the input AC voltage. In such a type of transformer, the number of turns in the secondary winding will be greater than the number of turns in the primary winding. In the step down transformer we get a low AC voltage at the output. In such a transformer the number of turns in the secondary winding will be less than the number of turns in the primary winding.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
