
The time period of a second’s pendulum on the surface of moon will be
$
A.\dfrac{2}{{\sqrt 6 }}s \\
B.6\sqrt 2 s \\
C.2\sqrt 6 s \\
D.2s \\
$
Answer
591.3k+ views
Hint: In order to solve this question, firstly we will write out the equation for the time period on the earth, then again for the time period on the moon earth by using the formula of time period at the surface of moon i.e. $T = 2\pi \sqrt {\dfrac{L}{g}} $.
Complete step-by-step solution -
We know that a seconds pendulum is a pendulum which has a time period of 2 seconds; one second for a swing in one direction and one second for the return swing with a frequency of $\dfrac{1}{2}Hz$.
On earth, the time period will be-$2 = 2\pi \sqrt {\dfrac{l}{g}} .............\left( 1 \right)$
On the surface of the moon, acceleration due to gravity is $\dfrac{g}{6}$.
( value of g at moon is$\dfrac{1}{6}$ of value of g at earth’s surface)
On the surface of the moon, the time period of a second’s pendulum will be$2\pi \sqrt {\dfrac{l}{{\dfrac{g}{6}}}} .............\left( 2 \right)$
Dividing the above equations 1 and 2,
We get-
$\dfrac{{2}}{T_{moon}}$= $\dfrac {{2\pi \sqrt {\dfrac{{l}}{g}}}} {2\pi \sqrt {\dfrac{{l}}{\dfrac{{g}}{6} }}}$
${T_{moon}} = 2\sqrt 6 s$
Therefore, the time period of a second’s pendulum on the surface of the moon will be $2\sqrt 6 s$.
Hence, option C is correct.
Note- While solving this question, we must know that a pendulum with any other value of period cannot be called a seconds pendulum. Thus a seconds pendulum anywhere has a period of 2 seconds, although it’s length will be different at different locations.
Complete step-by-step solution -
We know that a seconds pendulum is a pendulum which has a time period of 2 seconds; one second for a swing in one direction and one second for the return swing with a frequency of $\dfrac{1}{2}Hz$.
On earth, the time period will be-$2 = 2\pi \sqrt {\dfrac{l}{g}} .............\left( 1 \right)$
On the surface of the moon, acceleration due to gravity is $\dfrac{g}{6}$.
( value of g at moon is$\dfrac{1}{6}$ of value of g at earth’s surface)
On the surface of the moon, the time period of a second’s pendulum will be$2\pi \sqrt {\dfrac{l}{{\dfrac{g}{6}}}} .............\left( 2 \right)$
Dividing the above equations 1 and 2,
We get-
$\dfrac{{2}}{T_{moon}}$= $\dfrac {{2\pi \sqrt {\dfrac{{l}}{g}}}} {2\pi \sqrt {\dfrac{{l}}{\dfrac{{g}}{6} }}}$
${T_{moon}} = 2\sqrt 6 s$
Therefore, the time period of a second’s pendulum on the surface of the moon will be $2\sqrt 6 s$.
Hence, option C is correct.
Note- While solving this question, we must know that a pendulum with any other value of period cannot be called a seconds pendulum. Thus a seconds pendulum anywhere has a period of 2 seconds, although it’s length will be different at different locations.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

