
The three points $A\left( 3,8 \right)$, $B\left( 6,2 \right)$ and $C\left( 10,2 \right)$ are shown in the diagram. The point D is such that the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D.
Answer
537.3k+ views
Hint: Since the coordinates of the points A and B are given, we can determine the slope of the line AB, using the formula $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. Since the line DC is given parallel to AB, its slope will be equal to that of AB. And since AD is given to be perpendicular to AB, the product of the slope of AB and AD will be equal to $-1$, from which the slope of AD can be determined. Finally, using the point-slope form, we can determine the equations for the lines AD and DC, and on solving them for x and y, we will get the required coordinates for the point D.
Complete step-by-step answer:
We know that the slope of a line passing through two points having coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given by
$\Rightarrow m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Now, the coordinates of the points A and B are respectively $\left( 3,8 \right)$ and $\left( 6,2 \right)$. Therefore, the slope of the line AB is given as
\[\begin{align}
& \Rightarrow {{m}_{AB}}=\dfrac{2-8}{6-3} \\
& \Rightarrow {{m}_{AB}}=\dfrac{-6}{3} \\
& \Rightarrow {{m}_{AB}}=-2........\left( i \right) \\
\end{align}\]
Now, according to the question the line DC is parallel to AB. Therefore, its slope must be equal to that of AB, which means
$\Rightarrow {{m}_{DC}}={{m}_{AB}}$
Substituting (i) we get
$\Rightarrow {{m}_{DC}}=-2......\left( ii \right)$
Also, the line DA is perpendicular to AB. SO the slope of DA can be given as
$\Rightarrow {{m}_{DA}}{{m}_{AB}}=-1$
Substituting (i) we get
$\begin{align}
& \Rightarrow {{m}_{DA}}\left( -2 \right)=-1 \\
& \Rightarrow {{m}_{DA}}=\dfrac{1}{2}........\left( iii \right) \\
\end{align}$
Now, the coordinates of the point C are $\left( 10,2 \right)$. Therefore, using the point slope form we can write the equation of the line CD as
$\Rightarrow \left( y-2 \right)={{m}_{DC}}\left( x-10 \right)$
Substituting (ii) we get
\[\begin{align}
& \Rightarrow \left( y-2 \right)=\left( -2 \right)\left( x-10 \right) \\
& \Rightarrow y-2=-2x+20 \\
\end{align}\]
Adding \[2\] both sides, we get
$\begin{align}
& \Rightarrow y-2+2=-2x+20+2 \\
& \Rightarrow y=-2x+22.......\left( iv \right) \\
\end{align}$
Similarly, we can write the equation of the line DA as
$\Rightarrow y-8={{m}_{DA}}\left( x-3 \right)$
Substituting (iii) we get
$\Rightarrow y-8=\dfrac{1}{2}\left( x-3 \right)$
Multiplying by $2$ both the sides we get
$\begin{align}
& \Rightarrow 2\left( y-8 \right)=2\left( \dfrac{1}{2} \right)\left( x-3 \right) \\
& \Rightarrow 2y-16=x-3 \\
\end{align}$
Adding $16$ both the sides we get
$\begin{align}
& \Rightarrow 2y-16+16=x-3+16 \\
& \Rightarrow 2y=x+13.....\left( v \right) \\
\end{align}$
Now, the lines DA and DC intersect at the point D. Therefore, to get the coordinates of the point D, we have to solve the equation (iv) and (v). For this, we put the equation (iv) in (v) to get
$\begin{align}
& \Rightarrow 2\left( -2x+22 \right)=x+13 \\
& \Rightarrow -4x+44=x+13 \\
\end{align}$
Adding $4x$ both sides
\[\begin{align}
& \Rightarrow -4x+44+4x=x+13+4x \\
& \Rightarrow 44=5x+13 \\
& \Rightarrow 5x+13=44 \\
\end{align}\]
Subtracting \[13\] from both the sides we get
\[\begin{align}
& \Rightarrow 5x+13-13=44-13 \\
& \Rightarrow 5x=31 \\
\end{align}\]
Dividing both sides by \[5\]
$\begin{align}
& \Rightarrow \dfrac{5x}{5}=\dfrac{31}{5} \\
& \Rightarrow x=6.2 \\
\end{align}$
Putting this in the equation (iv) we get
\[\begin{align}
& \Rightarrow y=-2\left( 6.2 \right)+22 \\
& \Rightarrow y=-12.4+22 \\
& \Rightarrow y=9.6 \\
\end{align}\]
Hence, the coordinates of the point D are $\left( 6.2,9.6 \right)$.
Note: We must remember the different forms of equations of a straight line such as the two point form, slope intercept form etc. In the above solution, we have used the substitution method to solve the two equations for obtaining the coordinates of the point D. We can use any other method such as elimination method, or the cross multiplication method.
Complete step-by-step answer:
We know that the slope of a line passing through two points having coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given by
$\Rightarrow m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Now, the coordinates of the points A and B are respectively $\left( 3,8 \right)$ and $\left( 6,2 \right)$. Therefore, the slope of the line AB is given as
\[\begin{align}
& \Rightarrow {{m}_{AB}}=\dfrac{2-8}{6-3} \\
& \Rightarrow {{m}_{AB}}=\dfrac{-6}{3} \\
& \Rightarrow {{m}_{AB}}=-2........\left( i \right) \\
\end{align}\]
Now, according to the question the line DC is parallel to AB. Therefore, its slope must be equal to that of AB, which means
$\Rightarrow {{m}_{DC}}={{m}_{AB}}$
Substituting (i) we get
$\Rightarrow {{m}_{DC}}=-2......\left( ii \right)$
Also, the line DA is perpendicular to AB. SO the slope of DA can be given as
$\Rightarrow {{m}_{DA}}{{m}_{AB}}=-1$
Substituting (i) we get
$\begin{align}
& \Rightarrow {{m}_{DA}}\left( -2 \right)=-1 \\
& \Rightarrow {{m}_{DA}}=\dfrac{1}{2}........\left( iii \right) \\
\end{align}$
Now, the coordinates of the point C are $\left( 10,2 \right)$. Therefore, using the point slope form we can write the equation of the line CD as
$\Rightarrow \left( y-2 \right)={{m}_{DC}}\left( x-10 \right)$
Substituting (ii) we get
\[\begin{align}
& \Rightarrow \left( y-2 \right)=\left( -2 \right)\left( x-10 \right) \\
& \Rightarrow y-2=-2x+20 \\
\end{align}\]
Adding \[2\] both sides, we get
$\begin{align}
& \Rightarrow y-2+2=-2x+20+2 \\
& \Rightarrow y=-2x+22.......\left( iv \right) \\
\end{align}$
Similarly, we can write the equation of the line DA as
$\Rightarrow y-8={{m}_{DA}}\left( x-3 \right)$
Substituting (iii) we get
$\Rightarrow y-8=\dfrac{1}{2}\left( x-3 \right)$
Multiplying by $2$ both the sides we get
$\begin{align}
& \Rightarrow 2\left( y-8 \right)=2\left( \dfrac{1}{2} \right)\left( x-3 \right) \\
& \Rightarrow 2y-16=x-3 \\
\end{align}$
Adding $16$ both the sides we get
$\begin{align}
& \Rightarrow 2y-16+16=x-3+16 \\
& \Rightarrow 2y=x+13.....\left( v \right) \\
\end{align}$
Now, the lines DA and DC intersect at the point D. Therefore, to get the coordinates of the point D, we have to solve the equation (iv) and (v). For this, we put the equation (iv) in (v) to get
$\begin{align}
& \Rightarrow 2\left( -2x+22 \right)=x+13 \\
& \Rightarrow -4x+44=x+13 \\
\end{align}$
Adding $4x$ both sides
\[\begin{align}
& \Rightarrow -4x+44+4x=x+13+4x \\
& \Rightarrow 44=5x+13 \\
& \Rightarrow 5x+13=44 \\
\end{align}\]
Subtracting \[13\] from both the sides we get
\[\begin{align}
& \Rightarrow 5x+13-13=44-13 \\
& \Rightarrow 5x=31 \\
\end{align}\]
Dividing both sides by \[5\]
$\begin{align}
& \Rightarrow \dfrac{5x}{5}=\dfrac{31}{5} \\
& \Rightarrow x=6.2 \\
\end{align}$
Putting this in the equation (iv) we get
\[\begin{align}
& \Rightarrow y=-2\left( 6.2 \right)+22 \\
& \Rightarrow y=-12.4+22 \\
& \Rightarrow y=9.6 \\
\end{align}\]
Hence, the coordinates of the point D are $\left( 6.2,9.6 \right)$.
Note: We must remember the different forms of equations of a straight line such as the two point form, slope intercept form etc. In the above solution, we have used the substitution method to solve the two equations for obtaining the coordinates of the point D. We can use any other method such as elimination method, or the cross multiplication method.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

