
The three points $A\left( 3,8 \right)$, $B\left( 6,2 \right)$ and $C\left( 10,2 \right)$ are shown in the diagram. The point D is such that the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D.
Answer
525k+ views
Hint: Since the coordinates of the points A and B are given, we can determine the slope of the line AB, using the formula $m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$. Since the line DC is given parallel to AB, its slope will be equal to that of AB. And since AD is given to be perpendicular to AB, the product of the slope of AB and AD will be equal to $-1$, from which the slope of AD can be determined. Finally, using the point-slope form, we can determine the equations for the lines AD and DC, and on solving them for x and y, we will get the required coordinates for the point D.
Complete step-by-step answer:
We know that the slope of a line passing through two points having coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given by
$\Rightarrow m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Now, the coordinates of the points A and B are respectively $\left( 3,8 \right)$ and $\left( 6,2 \right)$. Therefore, the slope of the line AB is given as
\[\begin{align}
& \Rightarrow {{m}_{AB}}=\dfrac{2-8}{6-3} \\
& \Rightarrow {{m}_{AB}}=\dfrac{-6}{3} \\
& \Rightarrow {{m}_{AB}}=-2........\left( i \right) \\
\end{align}\]
Now, according to the question the line DC is parallel to AB. Therefore, its slope must be equal to that of AB, which means
$\Rightarrow {{m}_{DC}}={{m}_{AB}}$
Substituting (i) we get
$\Rightarrow {{m}_{DC}}=-2......\left( ii \right)$
Also, the line DA is perpendicular to AB. SO the slope of DA can be given as
$\Rightarrow {{m}_{DA}}{{m}_{AB}}=-1$
Substituting (i) we get
$\begin{align}
& \Rightarrow {{m}_{DA}}\left( -2 \right)=-1 \\
& \Rightarrow {{m}_{DA}}=\dfrac{1}{2}........\left( iii \right) \\
\end{align}$
Now, the coordinates of the point C are $\left( 10,2 \right)$. Therefore, using the point slope form we can write the equation of the line CD as
$\Rightarrow \left( y-2 \right)={{m}_{DC}}\left( x-10 \right)$
Substituting (ii) we get
\[\begin{align}
& \Rightarrow \left( y-2 \right)=\left( -2 \right)\left( x-10 \right) \\
& \Rightarrow y-2=-2x+20 \\
\end{align}\]
Adding \[2\] both sides, we get
$\begin{align}
& \Rightarrow y-2+2=-2x+20+2 \\
& \Rightarrow y=-2x+22.......\left( iv \right) \\
\end{align}$
Similarly, we can write the equation of the line DA as
$\Rightarrow y-8={{m}_{DA}}\left( x-3 \right)$
Substituting (iii) we get
$\Rightarrow y-8=\dfrac{1}{2}\left( x-3 \right)$
Multiplying by $2$ both the sides we get
$\begin{align}
& \Rightarrow 2\left( y-8 \right)=2\left( \dfrac{1}{2} \right)\left( x-3 \right) \\
& \Rightarrow 2y-16=x-3 \\
\end{align}$
Adding $16$ both the sides we get
$\begin{align}
& \Rightarrow 2y-16+16=x-3+16 \\
& \Rightarrow 2y=x+13.....\left( v \right) \\
\end{align}$
Now, the lines DA and DC intersect at the point D. Therefore, to get the coordinates of the point D, we have to solve the equation (iv) and (v). For this, we put the equation (iv) in (v) to get
$\begin{align}
& \Rightarrow 2\left( -2x+22 \right)=x+13 \\
& \Rightarrow -4x+44=x+13 \\
\end{align}$
Adding $4x$ both sides
\[\begin{align}
& \Rightarrow -4x+44+4x=x+13+4x \\
& \Rightarrow 44=5x+13 \\
& \Rightarrow 5x+13=44 \\
\end{align}\]
Subtracting \[13\] from both the sides we get
\[\begin{align}
& \Rightarrow 5x+13-13=44-13 \\
& \Rightarrow 5x=31 \\
\end{align}\]
Dividing both sides by \[5\]
$\begin{align}
& \Rightarrow \dfrac{5x}{5}=\dfrac{31}{5} \\
& \Rightarrow x=6.2 \\
\end{align}$
Putting this in the equation (iv) we get
\[\begin{align}
& \Rightarrow y=-2\left( 6.2 \right)+22 \\
& \Rightarrow y=-12.4+22 \\
& \Rightarrow y=9.6 \\
\end{align}\]
Hence, the coordinates of the point D are $\left( 6.2,9.6 \right)$.
Note: We must remember the different forms of equations of a straight line such as the two point form, slope intercept form etc. In the above solution, we have used the substitution method to solve the two equations for obtaining the coordinates of the point D. We can use any other method such as elimination method, or the cross multiplication method.
Complete step-by-step answer:
We know that the slope of a line passing through two points having coordinates $\left( {{x}_{1}},{{y}_{1}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ is given by
$\Rightarrow m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}$
Now, the coordinates of the points A and B are respectively $\left( 3,8 \right)$ and $\left( 6,2 \right)$. Therefore, the slope of the line AB is given as
\[\begin{align}
& \Rightarrow {{m}_{AB}}=\dfrac{2-8}{6-3} \\
& \Rightarrow {{m}_{AB}}=\dfrac{-6}{3} \\
& \Rightarrow {{m}_{AB}}=-2........\left( i \right) \\
\end{align}\]
Now, according to the question the line DC is parallel to AB. Therefore, its slope must be equal to that of AB, which means
$\Rightarrow {{m}_{DC}}={{m}_{AB}}$
Substituting (i) we get
$\Rightarrow {{m}_{DC}}=-2......\left( ii \right)$
Also, the line DA is perpendicular to AB. SO the slope of DA can be given as
$\Rightarrow {{m}_{DA}}{{m}_{AB}}=-1$
Substituting (i) we get
$\begin{align}
& \Rightarrow {{m}_{DA}}\left( -2 \right)=-1 \\
& \Rightarrow {{m}_{DA}}=\dfrac{1}{2}........\left( iii \right) \\
\end{align}$
Now, the coordinates of the point C are $\left( 10,2 \right)$. Therefore, using the point slope form we can write the equation of the line CD as
$\Rightarrow \left( y-2 \right)={{m}_{DC}}\left( x-10 \right)$
Substituting (ii) we get
\[\begin{align}
& \Rightarrow \left( y-2 \right)=\left( -2 \right)\left( x-10 \right) \\
& \Rightarrow y-2=-2x+20 \\
\end{align}\]
Adding \[2\] both sides, we get
$\begin{align}
& \Rightarrow y-2+2=-2x+20+2 \\
& \Rightarrow y=-2x+22.......\left( iv \right) \\
\end{align}$
Similarly, we can write the equation of the line DA as
$\Rightarrow y-8={{m}_{DA}}\left( x-3 \right)$
Substituting (iii) we get
$\Rightarrow y-8=\dfrac{1}{2}\left( x-3 \right)$
Multiplying by $2$ both the sides we get
$\begin{align}
& \Rightarrow 2\left( y-8 \right)=2\left( \dfrac{1}{2} \right)\left( x-3 \right) \\
& \Rightarrow 2y-16=x-3 \\
\end{align}$
Adding $16$ both the sides we get
$\begin{align}
& \Rightarrow 2y-16+16=x-3+16 \\
& \Rightarrow 2y=x+13.....\left( v \right) \\
\end{align}$
Now, the lines DA and DC intersect at the point D. Therefore, to get the coordinates of the point D, we have to solve the equation (iv) and (v). For this, we put the equation (iv) in (v) to get
$\begin{align}
& \Rightarrow 2\left( -2x+22 \right)=x+13 \\
& \Rightarrow -4x+44=x+13 \\
\end{align}$
Adding $4x$ both sides
\[\begin{align}
& \Rightarrow -4x+44+4x=x+13+4x \\
& \Rightarrow 44=5x+13 \\
& \Rightarrow 5x+13=44 \\
\end{align}\]
Subtracting \[13\] from both the sides we get
\[\begin{align}
& \Rightarrow 5x+13-13=44-13 \\
& \Rightarrow 5x=31 \\
\end{align}\]
Dividing both sides by \[5\]
$\begin{align}
& \Rightarrow \dfrac{5x}{5}=\dfrac{31}{5} \\
& \Rightarrow x=6.2 \\
\end{align}$
Putting this in the equation (iv) we get
\[\begin{align}
& \Rightarrow y=-2\left( 6.2 \right)+22 \\
& \Rightarrow y=-12.4+22 \\
& \Rightarrow y=9.6 \\
\end{align}\]
Hence, the coordinates of the point D are $\left( 6.2,9.6 \right)$.
Note: We must remember the different forms of equations of a straight line such as the two point form, slope intercept form etc. In the above solution, we have used the substitution method to solve the two equations for obtaining the coordinates of the point D. We can use any other method such as elimination method, or the cross multiplication method.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

