
The third, fourth and fifth terms in the expansion of ${\left( {x + a} \right)^n}$ in descending power of x are 84, 280 and 560 respectively, find x, a and n.
$
(a){\text{ x = - 1, a = - 2, n = 2}} \\
(b){\text{ x = 1, a = - 2, n = - 2}} \\
(c){\text{ x = - 1, a = 2, n = - 2}} \\
(d){\text{ x = 1, a = 2, n = 2}} \\
$
Answer
612.3k+ views
Hint – In this question use the direct formula for any rth term a binomial expansion of ${\left( {x + a} \right)^n}$ that is ${T_{r + 1}} = {}^n{C_r}{x^{n - r}}{a^r}$, write the 4th, 5th and 3rd term in this expansion using this formula to get the values of a, x and n.
Complete step-by-step answer:
According to binomial expansion of ${\left( {x + a} \right)^n}$ the general term
${T_{r + 1}} = {}^n{C_r}{x^{n - r}}{a^r}$, where $0 \leqslant r \leqslant n$ so when we increases the value of r the power of x is decreases.
Therefore 3rd, 4th and 5th term in the expansion of ${\left( {x + a} \right)^n}$ is
${T_3} = {}^n{C_2}{x^{n - 2}}{a^2} = 84$............................... (1)
Similarly,
${T_4} = {}^n{C_3}{x^{n - 3}}{a^3} = 280$............................... (2)
${T_5} = {}^n{C_4}{x^{n - 4}}{a^4} = 560$............................... (3)
Now divide equation (2) from (1) we have,
$ \Rightarrow \dfrac{{{}^n{C_3}{x^{n - 3}}{a^3}}}{{{}^n{C_2}{x^{n - 2}}{a^2}}} = \dfrac{{280}}{{84}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{{}^n{C_3}{a^{3 - 2}}}}{{{}^n{C_2}{x^{n - 2 - n + 3}}}} = \dfrac{{280}}{{84}}$
$ \Rightarrow \dfrac{{{}^n{C_3}}}{{{}^n{C_2}}}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$......................... (4)
Now divide equation (3) by (2) we have,
$ \Rightarrow \dfrac{{{}^n{C_4}{x^{n - 4}}{a^4}}}{{{}^n{C_3}{x^{n - 3}}{a^3}}} = \dfrac{{560}}{{280}} = 2$
$ \Rightarrow \dfrac{{{}^n{C_4}}}{{{}^n{C_3}}}\left( {\dfrac{a}{x}} \right) = 2$............................... (5)
Now as we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so use this property we have,
From equation (4) we have,
$ \Rightarrow \dfrac{{\dfrac{{n!}}{{3!\left( {n - 3} \right)!}}}}{{\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}}}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$
$ \Rightarrow \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)!}}{{n!}}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$
$ \Rightarrow \dfrac{{\left( {n - 2} \right)}}{3}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$.................. (6)
From equation (5) we have,
$ \Rightarrow \dfrac{{{}^n{C_4}}}{{{}^n{C_3}}}\left( {\dfrac{a}{x}} \right) = 2$
$ \Rightarrow \dfrac{{\dfrac{{n!}}{{4!\left( {n - 4} \right)!}}}}{{\dfrac{{n!}}{{3!\left( {n - 3} \right)!}}}}\left( {\dfrac{a}{x}} \right) = 2$
$ \Rightarrow \dfrac{{n!}}{{4!\left( {n - 4} \right)!}} \times \dfrac{{3!\left( {n - 3} \right)!}}{{n!}}\left( {\dfrac{a}{x}} \right) = 2$
$ \Rightarrow \dfrac{{\left( {n - 3} \right)}}{4}\left( {\dfrac{a}{x}} \right) = 2$....................... (7)
Now divide equation (6) by equation (7) we have,
$ \Rightarrow \dfrac{{\dfrac{{\left( {n - 2} \right)}}{3}\left( {\dfrac{a}{x}} \right)}}{{\dfrac{{\left( {n - 3} \right)}}{4}\left( {\dfrac{a}{x}} \right)}} = \dfrac{{\dfrac{{10}}{3}}}{2}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{4\left( {n - 2} \right)}}{{3\left( {n - 3} \right)}} = \dfrac{5}{3}$
$ \Rightarrow 4n - 8 = 5n - 15$
$ \Rightarrow 5n - 4n = 15 - 8$
$ \Rightarrow n = 7$
Now from equation (6) we have,
$ \Rightarrow \dfrac{{\left( {7 - 2} \right)}}{3}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$
$ \Rightarrow \dfrac{a}{x} = 2$
$ \Rightarrow a = 2x$............. (8)
Now from equation (1) we have,
$ \Rightarrow {}^7{C_2}{x^{7 - 2}}{a^2} = 84$
$ \Rightarrow \dfrac{{7!}}{{2!.5!}}{x^5}{a^2} = 84$
$ \Rightarrow \dfrac{{7 \times 6 \times 5!}}{{2 \times 1 \times 5!}}{x^5}{a^2} = 84$
$ \Rightarrow 21{x^5}{a^2} = 84$
$ \Rightarrow {x^5}{a^2} = 4$
Now from equation (8) we have,
$ \Rightarrow {x^5}{\left( {2x} \right)^2} = 4$
$ \Rightarrow 4{x^7} = 4$
$ \Rightarrow {x^7} = 1$
$ \Rightarrow x = 1$
Now from equation (8) we have
$ \Rightarrow a = 2x = 2\left( 1 \right) = 2$
So the required values a = 2, x= 1 and n= 7.
So this is the required answer.
Hence option (D) is correct.
Note – The binomial theorem is an algebraic method of expanding a binomial expression, essentially it demonstrates what happens when we multiply a binomial by itself as many times as we need. It is advised to remember some of the basic direct formulas for binomial expansion like the general term of an expansion as it helps save a lot of time.
Complete step-by-step answer:
According to binomial expansion of ${\left( {x + a} \right)^n}$ the general term
${T_{r + 1}} = {}^n{C_r}{x^{n - r}}{a^r}$, where $0 \leqslant r \leqslant n$ so when we increases the value of r the power of x is decreases.
Therefore 3rd, 4th and 5th term in the expansion of ${\left( {x + a} \right)^n}$ is
${T_3} = {}^n{C_2}{x^{n - 2}}{a^2} = 84$............................... (1)
Similarly,
${T_4} = {}^n{C_3}{x^{n - 3}}{a^3} = 280$............................... (2)
${T_5} = {}^n{C_4}{x^{n - 4}}{a^4} = 560$............................... (3)
Now divide equation (2) from (1) we have,
$ \Rightarrow \dfrac{{{}^n{C_3}{x^{n - 3}}{a^3}}}{{{}^n{C_2}{x^{n - 2}}{a^2}}} = \dfrac{{280}}{{84}}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{{}^n{C_3}{a^{3 - 2}}}}{{{}^n{C_2}{x^{n - 2 - n + 3}}}} = \dfrac{{280}}{{84}}$
$ \Rightarrow \dfrac{{{}^n{C_3}}}{{{}^n{C_2}}}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$......................... (4)
Now divide equation (3) by (2) we have,
$ \Rightarrow \dfrac{{{}^n{C_4}{x^{n - 4}}{a^4}}}{{{}^n{C_3}{x^{n - 3}}{a^3}}} = \dfrac{{560}}{{280}} = 2$
$ \Rightarrow \dfrac{{{}^n{C_4}}}{{{}^n{C_3}}}\left( {\dfrac{a}{x}} \right) = 2$............................... (5)
Now as we know that ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$ so use this property we have,
From equation (4) we have,
$ \Rightarrow \dfrac{{\dfrac{{n!}}{{3!\left( {n - 3} \right)!}}}}{{\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}}}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$
$ \Rightarrow \dfrac{{n!}}{{3!\left( {n - 3} \right)!}} \times \dfrac{{2!\left( {n - 2} \right)!}}{{n!}}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$
$ \Rightarrow \dfrac{{\left( {n - 2} \right)}}{3}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$.................. (6)
From equation (5) we have,
$ \Rightarrow \dfrac{{{}^n{C_4}}}{{{}^n{C_3}}}\left( {\dfrac{a}{x}} \right) = 2$
$ \Rightarrow \dfrac{{\dfrac{{n!}}{{4!\left( {n - 4} \right)!}}}}{{\dfrac{{n!}}{{3!\left( {n - 3} \right)!}}}}\left( {\dfrac{a}{x}} \right) = 2$
$ \Rightarrow \dfrac{{n!}}{{4!\left( {n - 4} \right)!}} \times \dfrac{{3!\left( {n - 3} \right)!}}{{n!}}\left( {\dfrac{a}{x}} \right) = 2$
$ \Rightarrow \dfrac{{\left( {n - 3} \right)}}{4}\left( {\dfrac{a}{x}} \right) = 2$....................... (7)
Now divide equation (6) by equation (7) we have,
$ \Rightarrow \dfrac{{\dfrac{{\left( {n - 2} \right)}}{3}\left( {\dfrac{a}{x}} \right)}}{{\dfrac{{\left( {n - 3} \right)}}{4}\left( {\dfrac{a}{x}} \right)}} = \dfrac{{\dfrac{{10}}{3}}}{2}$
Now simplify the above equation we have,
$ \Rightarrow \dfrac{{4\left( {n - 2} \right)}}{{3\left( {n - 3} \right)}} = \dfrac{5}{3}$
$ \Rightarrow 4n - 8 = 5n - 15$
$ \Rightarrow 5n - 4n = 15 - 8$
$ \Rightarrow n = 7$
Now from equation (6) we have,
$ \Rightarrow \dfrac{{\left( {7 - 2} \right)}}{3}\left( {\dfrac{a}{x}} \right) = \dfrac{{10}}{3}$
$ \Rightarrow \dfrac{a}{x} = 2$
$ \Rightarrow a = 2x$............. (8)
Now from equation (1) we have,
$ \Rightarrow {}^7{C_2}{x^{7 - 2}}{a^2} = 84$
$ \Rightarrow \dfrac{{7!}}{{2!.5!}}{x^5}{a^2} = 84$
$ \Rightarrow \dfrac{{7 \times 6 \times 5!}}{{2 \times 1 \times 5!}}{x^5}{a^2} = 84$
$ \Rightarrow 21{x^5}{a^2} = 84$
$ \Rightarrow {x^5}{a^2} = 4$
Now from equation (8) we have,
$ \Rightarrow {x^5}{\left( {2x} \right)^2} = 4$
$ \Rightarrow 4{x^7} = 4$
$ \Rightarrow {x^7} = 1$
$ \Rightarrow x = 1$
Now from equation (8) we have
$ \Rightarrow a = 2x = 2\left( 1 \right) = 2$
So the required values a = 2, x= 1 and n= 7.
So this is the required answer.
Hence option (D) is correct.
Note – The binomial theorem is an algebraic method of expanding a binomial expression, essentially it demonstrates what happens when we multiply a binomial by itself as many times as we need. It is advised to remember some of the basic direct formulas for binomial expansion like the general term of an expansion as it helps save a lot of time.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

