
The term independent of $x$ in expansion of ${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$ is:
Answer
544.2k+ views
Hint:
Here, we will simplify the given expression by applying different algebraic identities. Then, after simplifying it, we will find the general term of the binomial expansion of the given expression. We will then equate the exponential power of $x$ to 0 to find the term independent of $x$ Then we will substitute the obtained value in the general term of the binomial theorem to find the required term independent of $x$.
Formula Used:
We will use the following formulas:
1) $\left( {{a^3} + {b^3}} \right) = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$
2) $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$
3) ${T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}$
4) ${a^m} \times {a^n} = {a^{m + n}}$
5) ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Complete step by step solution:
Given expression is: ${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$
Now, this can also be written as:
${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{{{\left( {{x^{\dfrac{1}{3}}}} \right)}^3} + {1^3}}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{{{\left( {\sqrt x } \right)}^2} - {1^2}}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$
Now, taking out $\sqrt x $ common from the denominator of the second fraction, we get,
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{{{\left( {{x^{\dfrac{1}{3}}}} \right)}^3} + {1^3}}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{{{\left( {\sqrt x } \right)}^2} - {1^2}}}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$
Using the properties $\left( {{a^3} + {b^3}} \right) = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$ and $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ in the numerators respectively, we get,
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{\left( {{x^{\dfrac{1}{3}}} + 1} \right)\left( {{x^{\dfrac{2}{3}}} + 1 - {x^{\dfrac{1}{3}}}} \right)}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$
Cancelling out the same brackets from the numerator and denominator, we get,
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\left( {{x^{\dfrac{1}{3}}} + 1} \right) - \dfrac{{\left( {\sqrt x + 1} \right)}}{{\sqrt x }}} \right)^{10}}$
Splitting the denominator of the second fraction, we get
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} + 1 - \dfrac{{\sqrt x }}{{\sqrt x }} - \dfrac{1}{{\sqrt x }}} \right)^{10}}$
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} + 1 - 1 - \dfrac{1}{{{x^{\dfrac{1}{2}}}}}} \right)^{10}}$
Simplifying the expression, we get
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} - {x^{ - \dfrac{1}{2}}}} \right)^{10}}$
Now we will use the general term of binomial theorem for the given expression ${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$.
Here, substituting $n = 10$, $a = {x^{\dfrac{1}{3}}}$ and $b = - {x^{ - \dfrac{1}{2}}}$ in the formula ${T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}$, we get,
${T_{r + 1}} = {}^{10}{C_r}{\left( {{x^{\dfrac{1}{3}}}} \right)^{10 - r}}{\left( { - {x^{ - \dfrac{1}{2}}}} \right)^r}$
$ \Rightarrow {T_{r + 1}} = {}^{10}{C_r}{\left( { - 1} \right)^r}{\left( x \right)^{\dfrac{{10 - r}}{3}}}{\left( x \right)^{ - \dfrac{r}{2}}}$
Now, using the identity ${a^m} \times {a^n} = {a^{m + n}}$, we get,
$ \Rightarrow {T_{r + 1}} = {}^{10}{C_r}{\left( { - 1} \right)^r}{\left( x \right)^{\dfrac{{10 - r}}{3}}}^{ - \dfrac{r}{2}}$……………………………………..$\left( 1 \right)$
Now, for independent of $x$, we will equate the exponent of $x$ to 0.
$\dfrac{{10 - r}}{3} - \dfrac{r}{2} = 0$
Taking LCM and solving further, we get
$ \Rightarrow 20 - 2r - 3r = 0$
Adding and subtracting the like terms, we get
$ \Rightarrow 5r = 20$
Dividing both sides by 5, we get
$ \Rightarrow r = 4$
Hence, substituting $r = 4$ in equation $\left( 1 \right)$, we get,
${T_{4 + 1}} = {}^{10}{C_4}{\left( { - 1} \right)^4}{\left( x \right)^{\dfrac{{10 - 4}}{3}}}^{ - \dfrac{4}{2}}$
Simplifying the expression, we get
$ \Rightarrow {T_5} = {}^{10}{C_4}{\left( x \right)^0} = {}^{10}{C_4}$
Now, using the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we get,
$ \Rightarrow {T_5} = {}^{10}{C_4} = \dfrac{{10!}}{{4!6!}} = \dfrac{{10 \times 9 \times 8 \times 7}}{{4 \times 3 \times 2}}$
Simplifying the expression further, we get
$ \Rightarrow {T_5} = 210$
Therefore, the term independent of $x$ in expansion of ${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$ is 210.
Hence, this is the required answer.
Note:
In algebra, binomial theorem describes the algebraic expansion of the powers of a binomial. Whenever, we are required to find any term independent of $x$ then, we try to make its exponential power 0. This is because if we have ${x^0}$, then by the formula ${x^0} = 1$, our variable $x$ will get vanished. Thus, we equate the power to 0, to find the value of $r$ to be substituted in the general term and hence, find the required term which is independent of $x$.
Here, we will simplify the given expression by applying different algebraic identities. Then, after simplifying it, we will find the general term of the binomial expansion of the given expression. We will then equate the exponential power of $x$ to 0 to find the term independent of $x$ Then we will substitute the obtained value in the general term of the binomial theorem to find the required term independent of $x$.
Formula Used:
We will use the following formulas:
1) $\left( {{a^3} + {b^3}} \right) = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$
2) $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$
3) ${T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}$
4) ${a^m} \times {a^n} = {a^{m + n}}$
5) ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Complete step by step solution:
Given expression is: ${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$
Now, this can also be written as:
${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{{{\left( {{x^{\dfrac{1}{3}}}} \right)}^3} + {1^3}}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{{{\left( {\sqrt x } \right)}^2} - {1^2}}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$
Now, taking out $\sqrt x $ common from the denominator of the second fraction, we get,
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{{{\left( {{x^{\dfrac{1}{3}}}} \right)}^3} + {1^3}}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{{{\left( {\sqrt x } \right)}^2} - {1^2}}}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$
Using the properties $\left( {{a^3} + {b^3}} \right) = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)$ and $\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)$ in the numerators respectively, we get,
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\dfrac{{\left( {{x^{\dfrac{1}{3}}} + 1} \right)\left( {{x^{\dfrac{2}{3}}} + 1 - {x^{\dfrac{1}{3}}}} \right)}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$
Cancelling out the same brackets from the numerator and denominator, we get,
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {\left( {{x^{\dfrac{1}{3}}} + 1} \right) - \dfrac{{\left( {\sqrt x + 1} \right)}}{{\sqrt x }}} \right)^{10}}$
Splitting the denominator of the second fraction, we get
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} + 1 - \dfrac{{\sqrt x }}{{\sqrt x }} - \dfrac{1}{{\sqrt x }}} \right)^{10}}$
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} + 1 - 1 - \dfrac{1}{{{x^{\dfrac{1}{2}}}}}} \right)^{10}}$
Simplifying the expression, we get
$ \Rightarrow {\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}} = {\left( {{x^{\dfrac{1}{3}}} - {x^{ - \dfrac{1}{2}}}} \right)^{10}}$
Now we will use the general term of binomial theorem for the given expression ${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$.
Here, substituting $n = 10$, $a = {x^{\dfrac{1}{3}}}$ and $b = - {x^{ - \dfrac{1}{2}}}$ in the formula ${T_{r + 1}} = {}^n{C_r}{a^{n - r}}{b^r}$, we get,
${T_{r + 1}} = {}^{10}{C_r}{\left( {{x^{\dfrac{1}{3}}}} \right)^{10 - r}}{\left( { - {x^{ - \dfrac{1}{2}}}} \right)^r}$
$ \Rightarrow {T_{r + 1}} = {}^{10}{C_r}{\left( { - 1} \right)^r}{\left( x \right)^{\dfrac{{10 - r}}{3}}}{\left( x \right)^{ - \dfrac{r}{2}}}$
Now, using the identity ${a^m} \times {a^n} = {a^{m + n}}$, we get,
$ \Rightarrow {T_{r + 1}} = {}^{10}{C_r}{\left( { - 1} \right)^r}{\left( x \right)^{\dfrac{{10 - r}}{3}}}^{ - \dfrac{r}{2}}$……………………………………..$\left( 1 \right)$
Now, for independent of $x$, we will equate the exponent of $x$ to 0.
$\dfrac{{10 - r}}{3} - \dfrac{r}{2} = 0$
Taking LCM and solving further, we get
$ \Rightarrow 20 - 2r - 3r = 0$
Adding and subtracting the like terms, we get
$ \Rightarrow 5r = 20$
Dividing both sides by 5, we get
$ \Rightarrow r = 4$
Hence, substituting $r = 4$ in equation $\left( 1 \right)$, we get,
${T_{4 + 1}} = {}^{10}{C_4}{\left( { - 1} \right)^4}{\left( x \right)^{\dfrac{{10 - 4}}{3}}}^{ - \dfrac{4}{2}}$
Simplifying the expression, we get
$ \Rightarrow {T_5} = {}^{10}{C_4}{\left( x \right)^0} = {}^{10}{C_4}$
Now, using the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we get,
$ \Rightarrow {T_5} = {}^{10}{C_4} = \dfrac{{10!}}{{4!6!}} = \dfrac{{10 \times 9 \times 8 \times 7}}{{4 \times 3 \times 2}}$
Simplifying the expression further, we get
$ \Rightarrow {T_5} = 210$
Therefore, the term independent of $x$ in expansion of ${\left( {\dfrac{{x + 1}}{{{x^{\dfrac{2}{3}}} - {x^{\dfrac{1}{3}}} + 1}} - \dfrac{{x - 1}}{{x - {x^{\dfrac{1}{2}}}}}} \right)^{10}}$ is 210.
Hence, this is the required answer.
Note:
In algebra, binomial theorem describes the algebraic expansion of the powers of a binomial. Whenever, we are required to find any term independent of $x$ then, we try to make its exponential power 0. This is because if we have ${x^0}$, then by the formula ${x^0} = 1$, our variable $x$ will get vanished. Thus, we equate the power to 0, to find the value of $r$ to be substituted in the general term and hence, find the required term which is independent of $x$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

