
The temperature at which R.M.S velocity of $ S{O_2} $ molecules is half that of helium molecules as $ 300{\text{ K}} $ ?
A. $ {\text{150 K}} $
B. $ 600{\text{ K}} $
C. $ 900{\text{ K}} $
D. $ 1200{\text{ K}} $
Answer
498k+ views
Hint: Root means square (R.M.S) velocity of a molecule is calculated by using the formula:
$ {v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}} $
We will find the dependencies on which the root mean square velocity of a molecule depends. Then with the help of the relation between the R.M.S velocity of helium and $ S{O_2} $ molecules we can find the temperature at which R.M.S velocity of $ S{O_2} $ molecules is half that of helium molecules.
$ {v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}} $
where,
$ R{\text{ = }} $ Universal Gas constant
$ {\text{T = }} $ Temperature of gas
$ {\text{M = }} $ Molecular mass of gas.
Complete Step By Step Answer:
The root mean square (R.M.S) velocity is the square root of the mean of the all velocities of a molecule. It is represented by $ {v_{r.m.s}} $ and it can be calculated by using the formula:
$ \Rightarrow {\text{ }}{v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}} $
We can observe that the only variables on which it depends is temperature of gas and molecular mass of gas molecules. Since all other terms are constant this can be deduced as,
$ \Rightarrow {\text{ }}{v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{T}{M}} $
For $ S{O_2} $ molecules it can be written as,
$ {v_{r.m.s\left( {S{O_2}} \right)}}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}}}{{{M_{S{O_2}}}}}} $ ___________ $ {\text{(1)}} $
Similarly for Helium molecules it can be written as,
$ {v_{r.m.s\left( {H{e_2}} \right)}}{\text{ = }}\sqrt {\dfrac{{{T_{H{e_2}}}}}{{{M_{H{e_2}}}}}} $ _____________ $ {\text{(2)}} $
According to question $ {v_{r.m.s(S{O_2})}} $ is half of $ {v_{r.m.s(H{e_2})}} $ . It can be represented as:
$ \dfrac{{{v_{r.m.s(S{O_2})}}}}{{{v_{r.m.s(H{e_2})}}}}{\text{ = }}\dfrac{1}{2} $ ______________ $ (3) $
Also $ {T_{He}} $ is given as $ 300{\text{ K}} $ and we can calculate molecular mass of both gases as,
Molecular mass of $ S{O_2} $ molecules $ {M_{S{O_2}}}{\text{ = }}\left( {32{\text{ + 16 }} \times {\text{ 2}}} \right){\text{ = 64 g}} $
Molecular mass of $ H{e_2} $ molecules $ {M_{H{e_2}}}{\text{ = }}\left( {2{\text{ }} \times {\text{ 2}}} \right){\text{ = 4 g}} $
Now dividing equation $ {\text{(1)}} $ and $ {\text{(2)}} $ we get the result as,
$ \Rightarrow {\text{ }}\dfrac{{{v_{r.m.s(S{O_2})}}}}{{{v_{r.m.s(H{e_2})}}}}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ }}{M_{H{e_2}}}}}{{{T_{H{e_2}}}{\text{ }} \times {\text{ }}{M_{S{O_2}}}}}} $
On substituting the result from equation $ (3) $ , we get the result as
$ \Rightarrow {\text{ }}\dfrac{1}{2}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ }}{M_{H{e_2}}}}}{{{T_{H{e_2}}}{\text{ }} \times {\text{ }}{M_{S{O_2}}}}}} $
On substituting the given values we get the result as,
$ \Rightarrow {\text{ }}\dfrac{1}{2}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ 4}}}}{{{\text{300 }} \times {\text{ 64}}}}} $
On squaring both sides and rearrange the terms for finding $ {T_{S{O_2}}} $ ,
$ \Rightarrow {\text{ }}{{\text{T}}_{S{O_2}}}{\text{ = }}\dfrac{{300{\text{ }} \times {\text{ 64}}}}{{16}} $
$ \Rightarrow {\text{ }}{{\text{T}}_{S{O_2}}}{\text{ = 1200 K}} $
Hence we get the temperature as $ {\text{1200 K}} $ .
Thus the correct option is D.
Note:
The value of universal gas constant changes only when the units of other parameters change. Thus we can treat it as constant. Helium in molecular form is present as $ H{e_2} $ not as $ He $ . The temperature of the gas should be in kelvin. If it is in degree celsius then do convert it into Kelvin scale.
$ {v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}} $
We will find the dependencies on which the root mean square velocity of a molecule depends. Then with the help of the relation between the R.M.S velocity of helium and $ S{O_2} $ molecules we can find the temperature at which R.M.S velocity of $ S{O_2} $ molecules is half that of helium molecules.
$ {v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}} $
where,
$ R{\text{ = }} $ Universal Gas constant
$ {\text{T = }} $ Temperature of gas
$ {\text{M = }} $ Molecular mass of gas.
Complete Step By Step Answer:
The root mean square (R.M.S) velocity is the square root of the mean of the all velocities of a molecule. It is represented by $ {v_{r.m.s}} $ and it can be calculated by using the formula:
$ \Rightarrow {\text{ }}{v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{{3RT}}{M}} $
We can observe that the only variables on which it depends is temperature of gas and molecular mass of gas molecules. Since all other terms are constant this can be deduced as,
$ \Rightarrow {\text{ }}{v_{r.m.s}}{\text{ = }}\sqrt {\dfrac{T}{M}} $
For $ S{O_2} $ molecules it can be written as,
$ {v_{r.m.s\left( {S{O_2}} \right)}}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}}}{{{M_{S{O_2}}}}}} $ ___________ $ {\text{(1)}} $
Similarly for Helium molecules it can be written as,
$ {v_{r.m.s\left( {H{e_2}} \right)}}{\text{ = }}\sqrt {\dfrac{{{T_{H{e_2}}}}}{{{M_{H{e_2}}}}}} $ _____________ $ {\text{(2)}} $
According to question $ {v_{r.m.s(S{O_2})}} $ is half of $ {v_{r.m.s(H{e_2})}} $ . It can be represented as:
$ \dfrac{{{v_{r.m.s(S{O_2})}}}}{{{v_{r.m.s(H{e_2})}}}}{\text{ = }}\dfrac{1}{2} $ ______________ $ (3) $
Also $ {T_{He}} $ is given as $ 300{\text{ K}} $ and we can calculate molecular mass of both gases as,
Molecular mass of $ S{O_2} $ molecules $ {M_{S{O_2}}}{\text{ = }}\left( {32{\text{ + 16 }} \times {\text{ 2}}} \right){\text{ = 64 g}} $
Molecular mass of $ H{e_2} $ molecules $ {M_{H{e_2}}}{\text{ = }}\left( {2{\text{ }} \times {\text{ 2}}} \right){\text{ = 4 g}} $
Now dividing equation $ {\text{(1)}} $ and $ {\text{(2)}} $ we get the result as,
$ \Rightarrow {\text{ }}\dfrac{{{v_{r.m.s(S{O_2})}}}}{{{v_{r.m.s(H{e_2})}}}}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ }}{M_{H{e_2}}}}}{{{T_{H{e_2}}}{\text{ }} \times {\text{ }}{M_{S{O_2}}}}}} $
On substituting the result from equation $ (3) $ , we get the result as
$ \Rightarrow {\text{ }}\dfrac{1}{2}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ }}{M_{H{e_2}}}}}{{{T_{H{e_2}}}{\text{ }} \times {\text{ }}{M_{S{O_2}}}}}} $
On substituting the given values we get the result as,
$ \Rightarrow {\text{ }}\dfrac{1}{2}{\text{ = }}\sqrt {\dfrac{{{T_{S{O_2}}}{\text{ }} \times {\text{ 4}}}}{{{\text{300 }} \times {\text{ 64}}}}} $
On squaring both sides and rearrange the terms for finding $ {T_{S{O_2}}} $ ,
$ \Rightarrow {\text{ }}{{\text{T}}_{S{O_2}}}{\text{ = }}\dfrac{{300{\text{ }} \times {\text{ 64}}}}{{16}} $
$ \Rightarrow {\text{ }}{{\text{T}}_{S{O_2}}}{\text{ = 1200 K}} $
Hence we get the temperature as $ {\text{1200 K}} $ .
Thus the correct option is D.
Note:
The value of universal gas constant changes only when the units of other parameters change. Thus we can treat it as constant. Helium in molecular form is present as $ H{e_2} $ not as $ He $ . The temperature of the gas should be in kelvin. If it is in degree celsius then do convert it into Kelvin scale.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

