
The sum to n terms of the series:
$ 1.3.5 + 3.5.7 + 5.7.9 + \ldots $
Answer
557.4k+ views
Hint: The terms of the series consist of three consecutive odd numbers. The formula to be used for the three consecutive odd integers is $ \left( {2n - 1} \right) $ , $ \left( {2n + 1} \right) $ , and $ \left( {2n + 3} \right) $ respectively. The n-th term of the series is formed and after that its summation is done to obtain the sum of the series for the n terms.
Complete step-by-step answer:
The given series is
$ 1.3.5 + 3.5.7 + 5.7.9 + \ldots $
Each term of the series should be observed carefully, in order to obtain the n-th term of the series.
The first terms include the product of $ 1 $ , $ 3 $ and $ 5 $ . The three terms are three consecutive odd numbers. In which the first term starts with $ 1 $ and ends with $ 5 $ . The successive number in each term differs by $ 2 $ .
The second term includes the product of $ 3 $ , $ 5 $ and $ 7 $ . The three terms are three consecutive odd numbers and the first term of it starts with $ 3 $ and ends with $ 7 $ . The successive number in each term differs by $ 2 $ .
After observing the two terms, the n-th term of the series should be suitably chosen.
Let us assume the n-th term of the series is $ \left( {2n - 1} \right) $ , $ \left( {2n + 1} \right) $ and $ \left( {2n + 3} \right) $ .
If we put $ n = 1 $ we get
$ \left( {2 \times 1 - 1} \right),\left( {2 \times 1 + 1} \right) $ and $ \left( {2 \times 1 + 3} \right) $ or $ 1,3 $ and $ 5 $ respectively.
If we put $ n = 2 $ we get
$ 3,5 $ and $ 7 $ .
The n-th term of the series is given by
$ {T_n} = \left( {2n - 1} \right)\left( {2n + 1} \right)\left( {2n + 3} \right) \cdots \left( 1 \right) $
Taking the summation of the n-th term in equation (1),
\[
{S_n} = \sum\limits_{n = 1}^n {{T_n}} \\
{S_n} = \sum\limits_{n = 1}^n {\left( {2n - 1} \right)\left( {2n + 1} \right)\left( {2n + 3} \right) \cdots \left( 2 \right)} \\
\]
Now opening the brackets in equation (2), we get
\[
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {\left( {2n - 1} \right)\left( {2n + 1} \right)\left( {2n + 3} \right)} \\
{S_n} = \sum\limits_{n = 1}^n {\left( {4{n^2} - 1} \right)\left( {2n + 3} \right)} \\
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {\left( {8{n^3} + 12{n^2} - 2n - 3} \right)} \cdots \left( 3 \right) \;
\]
Now taking the summation of the individual terms
\[
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {\left( {8{n^3}} \right) + } \sum\limits_{n = 1}^n {\left( {12{n^2}} \right) + } \sum\limits_{n = 1}^n {\left( { - 2n} \right) + \sum\limits_{n = 1}^n {\left( { - 3} \right)} } \\
{S_n} = 8\sum\limits_{n = 1}^n {\left( {{n^3}} \right) + } 12\sum\limits_{n = 1}^n {\left( {{n^2}} \right) - 2} \sum\limits_{n = 1}^n {\left( n \right) - 3\sum\limits_{n = 1}^n {\left( 1 \right)} } \cdots \left( 4 \right) \;
\]
The sum of the n-th of the series is
$ \sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} $ , $ \sum {{n^2} = \dfrac{{\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $ , $ \sum n = \dfrac{{\left( n \right)\left( {n + 1} \right)}}{2} $ and $ \sum 1 = n $ .
Substitute the values in equation (4), we get
$
\Rightarrow {S_n} = 8 \times \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} + 12 \times \dfrac{{\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - 2 \times \dfrac{{\left( n \right)\left( {n + 1} \right)}}{2} - 3n \\
{S_n} = 2 \times {n^2}{\left( {n + 1} \right)^2} + 2 \times \left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right) - \left( n \right)\left( {n + 1} \right) - 3n \cdots \left( 5 \right) \;
$
Taking out common from the first three terms in equation (5) we get
$
\Rightarrow {S_n} = n\left( {n + 1} \right)\left[ {2n\left( {n + 1} \right) + 2\left( {2n + 1} \right) - 1} \right] - 3n \\
\Rightarrow {S_n} = n\left( {n + 1} \right)\left[ {2{n^2} + 2n + 4n + 2 - 1} \right] - 3n \\
\Rightarrow {S_n} = n\left( {n + 1} \right)\left[ {2{n^2} + 6n + 1} \right] - 3n \;
$
Hence, the sum of the series is $ {S_n} = n\left( {n + 1} \right)\left[ {2{n^2} + 6n + 1} \right] - 3n $ .
So, the correct answer is “ $ n\left( {n + 1} \right)\left[ {2{n^2} + 6n + 1} \right] - 3n $ ”.
Note: The important thing is to analyze each and every term. After observing the pattern the n-the term should be decided
For consecutive odd terms, $ \left( {2n - 1} \right),\left( {2n + 1} \right) $ and $ \left( {2n + 3} \right) $ can be chosen.
For even terms $ \left( {2n} \right),\left( {2n + 2} \right) $ and $ \left( {2n + 4} \right) $ can be chosen.
The following summations are important and should be remembered.
$ \sum {{n^3} = } \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} $
$ \sum {{n^2} = } \dfrac{{\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} $
$ \sum n = \dfrac{{n\left( {n + 1} \right)}}{2} $
$ \sum 1 = n $
Complete step-by-step answer:
The given series is
$ 1.3.5 + 3.5.7 + 5.7.9 + \ldots $
Each term of the series should be observed carefully, in order to obtain the n-th term of the series.
The first terms include the product of $ 1 $ , $ 3 $ and $ 5 $ . The three terms are three consecutive odd numbers. In which the first term starts with $ 1 $ and ends with $ 5 $ . The successive number in each term differs by $ 2 $ .
The second term includes the product of $ 3 $ , $ 5 $ and $ 7 $ . The three terms are three consecutive odd numbers and the first term of it starts with $ 3 $ and ends with $ 7 $ . The successive number in each term differs by $ 2 $ .
After observing the two terms, the n-th term of the series should be suitably chosen.
Let us assume the n-th term of the series is $ \left( {2n - 1} \right) $ , $ \left( {2n + 1} \right) $ and $ \left( {2n + 3} \right) $ .
If we put $ n = 1 $ we get
$ \left( {2 \times 1 - 1} \right),\left( {2 \times 1 + 1} \right) $ and $ \left( {2 \times 1 + 3} \right) $ or $ 1,3 $ and $ 5 $ respectively.
If we put $ n = 2 $ we get
$ 3,5 $ and $ 7 $ .
The n-th term of the series is given by
$ {T_n} = \left( {2n - 1} \right)\left( {2n + 1} \right)\left( {2n + 3} \right) \cdots \left( 1 \right) $
Taking the summation of the n-th term in equation (1),
\[
{S_n} = \sum\limits_{n = 1}^n {{T_n}} \\
{S_n} = \sum\limits_{n = 1}^n {\left( {2n - 1} \right)\left( {2n + 1} \right)\left( {2n + 3} \right) \cdots \left( 2 \right)} \\
\]
Now opening the brackets in equation (2), we get
\[
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {\left( {2n - 1} \right)\left( {2n + 1} \right)\left( {2n + 3} \right)} \\
{S_n} = \sum\limits_{n = 1}^n {\left( {4{n^2} - 1} \right)\left( {2n + 3} \right)} \\
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {\left( {8{n^3} + 12{n^2} - 2n - 3} \right)} \cdots \left( 3 \right) \;
\]
Now taking the summation of the individual terms
\[
\Rightarrow {S_n} = \sum\limits_{n = 1}^n {\left( {8{n^3}} \right) + } \sum\limits_{n = 1}^n {\left( {12{n^2}} \right) + } \sum\limits_{n = 1}^n {\left( { - 2n} \right) + \sum\limits_{n = 1}^n {\left( { - 3} \right)} } \\
{S_n} = 8\sum\limits_{n = 1}^n {\left( {{n^3}} \right) + } 12\sum\limits_{n = 1}^n {\left( {{n^2}} \right) - 2} \sum\limits_{n = 1}^n {\left( n \right) - 3\sum\limits_{n = 1}^n {\left( 1 \right)} } \cdots \left( 4 \right) \;
\]
The sum of the n-th of the series is
$ \sum {{n^3}} = \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} $ , $ \sum {{n^2} = \dfrac{{\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} $ , $ \sum n = \dfrac{{\left( n \right)\left( {n + 1} \right)}}{2} $ and $ \sum 1 = n $ .
Substitute the values in equation (4), we get
$
\Rightarrow {S_n} = 8 \times \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} + 12 \times \dfrac{{\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} - 2 \times \dfrac{{\left( n \right)\left( {n + 1} \right)}}{2} - 3n \\
{S_n} = 2 \times {n^2}{\left( {n + 1} \right)^2} + 2 \times \left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right) - \left( n \right)\left( {n + 1} \right) - 3n \cdots \left( 5 \right) \;
$
Taking out common from the first three terms in equation (5) we get
$
\Rightarrow {S_n} = n\left( {n + 1} \right)\left[ {2n\left( {n + 1} \right) + 2\left( {2n + 1} \right) - 1} \right] - 3n \\
\Rightarrow {S_n} = n\left( {n + 1} \right)\left[ {2{n^2} + 2n + 4n + 2 - 1} \right] - 3n \\
\Rightarrow {S_n} = n\left( {n + 1} \right)\left[ {2{n^2} + 6n + 1} \right] - 3n \;
$
Hence, the sum of the series is $ {S_n} = n\left( {n + 1} \right)\left[ {2{n^2} + 6n + 1} \right] - 3n $ .
So, the correct answer is “ $ n\left( {n + 1} \right)\left[ {2{n^2} + 6n + 1} \right] - 3n $ ”.
Note: The important thing is to analyze each and every term. After observing the pattern the n-the term should be decided
For consecutive odd terms, $ \left( {2n - 1} \right),\left( {2n + 1} \right) $ and $ \left( {2n + 3} \right) $ can be chosen.
For even terms $ \left( {2n} \right),\left( {2n + 2} \right) $ and $ \left( {2n + 4} \right) $ can be chosen.
The following summations are important and should be remembered.
$ \sum {{n^3} = } \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} $
$ \sum {{n^2} = } \dfrac{{\left( n \right)\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} $
$ \sum n = \dfrac{{n\left( {n + 1} \right)}}{2} $
$ \sum 1 = n $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

