Answer
Verified
493.8k+ views
Hint: Start solving by finding the relation between the first number and the second number. Then find the percentage using the percentage formula or obtain the ratio of second number to the first number and multiply by 100.
Let us first assign the numbers to variables.
Let the first number be denoted by variable \[a\] and the second number be denoted by variable \[b\] .
It is given that the sum of these two numbers is \[\dfrac{{23}}{{20}}\] of the first number.
Let us write the equation as follows:
\[a + b = \dfrac{{23}}{{20}}a{\text{ }}..........(1)\]
Now let us simplify this further to obtain the relationship between the two numbers, \[a\] and \[b\] .
In equation (1), taking \[a\]in the left-hand side of the equation to the right-hand side, we get
\[b = \dfrac{{23}}{{20}}a - a\]
Taking \[a\] as a common term and solving, we get:
\[b = \left( {\dfrac{{23}}{{20}} - 1} \right)a\]
\[b = \left( {\dfrac{{23 - 20}}{{20}}} \right)a\]
\[b = \dfrac{3}{{20}}a{\text{ }}..........{\text{(2)}}\]
Hence, we obtained a relation between \[a\] and \[b\] .
To determine what percentage of the first number is the second number, we need to divide the second number by the first number and multiply the result by 100. This comes from the basic percentage formula as follows:
\[{\text{Percentage}} = \dfrac{{{\text{Required Value}}}}{{{\text{Total Value}}}} \times 100{\text{ \% }}\]
Here, the required value is the second number \[b\] and the total value is the first number \[a\] .
The required formula is as follows:
\[{\text{Percentage}} = \dfrac{b}{a} \times 100{\text{ \% }}...........{\text{(3)}}\]
Substituting equation (2) in equation (3), we get:
\[{\text{Percentage}} = \dfrac{{\dfrac{3}{{20}}a}}{a} \times 100{\text{ \% }}\]
Cancelling \[a\] in the numerator and denominator, we get:
\[{\text{Percentage}} = \dfrac{3}{{20}} \times 100{\text{ }}\% \]
Simplifying further we obtain:
\[{\text{Percentage}} = \dfrac{{300}}{{20}}{\text{ \% }}\]
\[{\text{Percentage}} = 15{\text{ \% }}\]
Hence, the correct answer is option (c).
Note: A common mistake committed is writing the equation as \[a + b = \dfrac{{23}}{{20}}b\] with \[b\] being the second number, which is wrong. You can also proceed by finding the ratio \[\dfrac{b}{a}\] directly from the equation \[b = \dfrac{3}{{20}}a{\text{ }}\] and multiplying the result by 100 to get the final answer.
Let us first assign the numbers to variables.
Let the first number be denoted by variable \[a\] and the second number be denoted by variable \[b\] .
It is given that the sum of these two numbers is \[\dfrac{{23}}{{20}}\] of the first number.
Let us write the equation as follows:
\[a + b = \dfrac{{23}}{{20}}a{\text{ }}..........(1)\]
Now let us simplify this further to obtain the relationship between the two numbers, \[a\] and \[b\] .
In equation (1), taking \[a\]in the left-hand side of the equation to the right-hand side, we get
\[b = \dfrac{{23}}{{20}}a - a\]
Taking \[a\] as a common term and solving, we get:
\[b = \left( {\dfrac{{23}}{{20}} - 1} \right)a\]
\[b = \left( {\dfrac{{23 - 20}}{{20}}} \right)a\]
\[b = \dfrac{3}{{20}}a{\text{ }}..........{\text{(2)}}\]
Hence, we obtained a relation between \[a\] and \[b\] .
To determine what percentage of the first number is the second number, we need to divide the second number by the first number and multiply the result by 100. This comes from the basic percentage formula as follows:
\[{\text{Percentage}} = \dfrac{{{\text{Required Value}}}}{{{\text{Total Value}}}} \times 100{\text{ \% }}\]
Here, the required value is the second number \[b\] and the total value is the first number \[a\] .
The required formula is as follows:
\[{\text{Percentage}} = \dfrac{b}{a} \times 100{\text{ \% }}...........{\text{(3)}}\]
Substituting equation (2) in equation (3), we get:
\[{\text{Percentage}} = \dfrac{{\dfrac{3}{{20}}a}}{a} \times 100{\text{ \% }}\]
Cancelling \[a\] in the numerator and denominator, we get:
\[{\text{Percentage}} = \dfrac{3}{{20}} \times 100{\text{ }}\% \]
Simplifying further we obtain:
\[{\text{Percentage}} = \dfrac{{300}}{{20}}{\text{ \% }}\]
\[{\text{Percentage}} = 15{\text{ \% }}\]
Hence, the correct answer is option (c).
Note: A common mistake committed is writing the equation as \[a + b = \dfrac{{23}}{{20}}b\] with \[b\] being the second number, which is wrong. You can also proceed by finding the ratio \[\dfrac{b}{a}\] directly from the equation \[b = \dfrac{3}{{20}}a{\text{ }}\] and multiplying the result by 100 to get the final answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE