
The sum of three numbers is 2. If twice the second number is added in the sum of first and third, we get 1. On adding the sum of the second and third number to five times the first number, we get 6. Find the three numbers using Cramer’s rule.
Answer
594.3k+ views
Hint: We will first make linear equations in three variables by the above given conditions. Now, we have three variables and three linear equations related to them. We will express this set in matrix form, which will have a coefficient matrix, a variable matrix and the constant matrix. The set of linear equations can be solved by Cramer’s rule, i.e.
${\text{x = }}\dfrac{{\left| {{{\text{D}}_{\text{x}}}} \right|}}{{\left| {\text{D}} \right|}}$,
${\text{y = }}\dfrac{{\left| {{{\text{D}}_{\text{y}}}} \right|}}{{\left| {\text{D}} \right|}}$,
${\text{z = }}\dfrac{{\left| {{{\text{D}}_{\text{z}}}} \right|}}{{\left| {\text{D}} \right|}}$
Where, ${{\text{D}}_{\text{x}}}{\text{,}}{{\text{D}}_{\text{y}}}{\text{,}}{{\text{D}}_{\text{z}}}$can be obtained by replacing first, second and third column of coefficient matrix by constant matrix respectively.
Complete step by step solution: Let the required three numbers be ${\text{x,y,z}}$
Now, according to the first condition, the sum of three numbers is 2
${\text{x + y + z = 2}}$ …(i)
According to the second condition, twice the second number is added in the sum of first and third, we get 1
${\text{2y + }}\left( {{\text{x + z}}} \right){\text{ = 1}}$
${\text{x + 2y + z = 1}}$ …(ii)
According to the third condition, on adding the sum of second and third number to five times the first number, we get 6
$\left( {{\text{y + z}}} \right){\text{ + 5x = 6}}$
${\text{5x + y + z = 6}}$ …(iii)
From (i), (ii) and (iii), we get:
${\text{x + y + z = 2}}$
${\text{x + 2y + z = 1}}$
${\text{5x + y + z = 6}}$
Now, we will represent the above equations in matrix form:
\[\left[ {\begin{array}{*{20}{c}}
{\text{1}}&{\text{1}}&{\text{1}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{5}}&{\text{1}}&{\text{1}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{\text{x}} \\
{\text{y}} \\
{\text{z}}
\end{array}} \right]{\text{ = }}\left[ {\begin{array}{*{20}{c}}
{\text{2}} \\
{\text{1}} \\
{\text{6}}
\end{array}} \right]\]
${\text{AX = B}}$
Where A is the coefficient matrix, X is the variable matrix and B is the constant matrix
Now, calculating determinant of coefficient matrix,
$
\left| {\text{A}} \right|{\text{ = }}\left| {\begin{array}{*{20}{c}}
\Rightarrow{\text{1}}&{\text{1}}&{\text{1}} \\
\Rightarrow{\text{1}}&{\text{2}}&{\text{1}} \\
\Rightarrow{\text{5}}&{\text{1}}&{\text{1}}
\end{array}} \right| \\
\Rightarrow \left| {\text{A}} \right|{\text{ = 1 - 1}}\left( {{\text{ - 4}}} \right){\text{ + 1 - 10}} \\
\Rightarrow \left| {\text{A}} \right|{\text{ = 1 + 4 + 1 - 10}} \\
\Rightarrow \left| {\text{A}} \right|{\text{ = - 4}} \\
$
So,
Now, the Cramer’s rule for solving set of linear equations is
${\text{x = }}\dfrac{{\left| {{{\text{D}}_{\text{x}}}} \right|}}{{\left| {\text{D}} \right|}}$,
${\text{y = }}\dfrac{{\left| {{{\text{D}}_{\text{y}}}} \right|}}{{\left| {\text{D}} \right|}}$,
${\text{z = }}\dfrac{{\left| {{{\text{D}}_{\text{z}}}} \right|}}{{\left| {\text{D}} \right|}}$
Where, ${{\text{D}}_{\text{x}}}{\text{,}}{{\text{D}}_{\text{y}}}{\text{,}}{{\text{D}}_{\text{z}}}$can be obtained by replacing first, second and third column of coefficient matrix by constant matrix respectively.
Now,
\[
{{\text{D}}_{\text{x}}}{\text{ = }}\left[ {\begin{array}{*{20}{c}}
{\text{2}}&{\text{1}}&{\text{1}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{6}}&{\text{1}}&{\text{1}}
\end{array}} \right]{\text{,}} \\
{{\text{D}}_{\text{y}}}{\text{ = }}\left[ {\begin{array}{*{20}{c}}
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{1}}&{\text{1}}&{\text{1}} \\
{\text{5}}&{\text{6}}&{\text{1}}
\end{array}} \right]{\text{,}} \\
{{\text{D}}_{\text{z}}}{\text{ = }}\left[ {\begin{array}{*{20}{c}}
{\text{1}}&{\text{1}}&{\text{2}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{5}}&{\text{1}}&{\text{6}}
\end{array}} \right] \\
\]
Now, calculating determinant of above matrices,
\[
\left| {{{\text{D}}_{\text{x}}}} \right|{\text{ = }}\left| {\begin{array}{*{20}{c}}
{\text{2}}&{\text{1}}&{\text{1}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{6}}&{\text{1}}&{\text{1}}
\end{array}} \right|{\text{ = 2 + 5 - 11 = - 4}} \\
\left| {{{\text{D}}_{\text{y}}}} \right|{\text{ = }}\left| {\begin{array}{*{20}{c}}
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{1}}&{\text{1}}&{\text{1}} \\
{\text{5}}&{\text{6}}&{\text{1}}
\end{array}} \right|{\text{ = - 5 + 8 + 1 = 4}} \\
\left| {{{\text{D}}_{\text{z}}}} \right|{\text{ = }}\left| {\begin{array}{*{20}{c}}
{\text{1}}&{\text{1}}&{\text{2}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{5}}&{\text{1}}&{\text{6}}
\end{array}} \right|{\text{ = 11 - 1 - 18 = - 8}} \\
\]
${\text{x = }}\dfrac{{\left| {{{\text{D}}_{\text{x}}}} \right|}}{{\left| {\text{D}} \right|}}{\text{ = }}\dfrac{{{\text{ - 4}}}}{{{\text{ - 4}}}}{\text{ = 1}}$,
${\text{y = }}\dfrac{{\left| {{{\text{D}}_{\text{y}}}} \right|}}{{\left| {\text{D}} \right|}}{\text{ = }}\dfrac{{\text{4}}}{{{\text{ - 4}}}}{\text{ = - 1}}$,
${\text{z = }}\dfrac{{\left| {{{\text{D}}_{\text{z}}}} \right|}}{{\left| {\text{D}} \right|}}{\text{ = }}\dfrac{{{\text{ - 8}}}}{{{\text{ - 4}}}}{\text{ = 2}}$
Thus, solution is ${\text{x = 1,y = - 1,z = 2}}$
Hence, the required numbers are, 1, -1, 2
Note: A different approach to the question could be solving the linear equations simply by eliminating variables, if it was not mentioned to solve by Cramer’s rule. As we have
${\text{x + y + z = 2}}$ …(i)
${\text{x + 2y + z = 1}}$ …(ii)
${\text{5x + y + z = 6}}$ …(iii)
Subtracting (ii) from (i)
${\text{x + 2y + z - }}\left( {{\text{x + y + z}}} \right){\text{ = 1 - 2}}$
$\Rightarrow{\text{y = - 1}}$
Now, subtracting, (ii) from (iii)
${\text{5x + y + z - }}\left( {{\text{x + 2y + z}}} \right){\text{ = 6 - 1}}$
$\Rightarrow{\text{4x - y = 5}}$
Substituting, ${\text{y = - 1}}$
${\text{4x + 1 = 5}}$
$\Rightarrow{\text{4x = 4}}$
$\Rightarrow{\text{x = 1}}$
Now, we have
${\text{x + y + z = 2}}$
$\Rightarrow{\text{1 + }}\left( {{\text{ - 1}}} \right){\text{ + z = 2}}$
$\Rightarrow{\text{z = 2}}$
Thus, solution is ${\text{x = 1,y = - 1,z = 2}}$
Hence, this method is easy and less time consuming.
${\text{x = }}\dfrac{{\left| {{{\text{D}}_{\text{x}}}} \right|}}{{\left| {\text{D}} \right|}}$,
${\text{y = }}\dfrac{{\left| {{{\text{D}}_{\text{y}}}} \right|}}{{\left| {\text{D}} \right|}}$,
${\text{z = }}\dfrac{{\left| {{{\text{D}}_{\text{z}}}} \right|}}{{\left| {\text{D}} \right|}}$
Where, ${{\text{D}}_{\text{x}}}{\text{,}}{{\text{D}}_{\text{y}}}{\text{,}}{{\text{D}}_{\text{z}}}$can be obtained by replacing first, second and third column of coefficient matrix by constant matrix respectively.
Complete step by step solution: Let the required three numbers be ${\text{x,y,z}}$
Now, according to the first condition, the sum of three numbers is 2
${\text{x + y + z = 2}}$ …(i)
According to the second condition, twice the second number is added in the sum of first and third, we get 1
${\text{2y + }}\left( {{\text{x + z}}} \right){\text{ = 1}}$
${\text{x + 2y + z = 1}}$ …(ii)
According to the third condition, on adding the sum of second and third number to five times the first number, we get 6
$\left( {{\text{y + z}}} \right){\text{ + 5x = 6}}$
${\text{5x + y + z = 6}}$ …(iii)
From (i), (ii) and (iii), we get:
${\text{x + y + z = 2}}$
${\text{x + 2y + z = 1}}$
${\text{5x + y + z = 6}}$
Now, we will represent the above equations in matrix form:
\[\left[ {\begin{array}{*{20}{c}}
{\text{1}}&{\text{1}}&{\text{1}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{5}}&{\text{1}}&{\text{1}}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{\text{x}} \\
{\text{y}} \\
{\text{z}}
\end{array}} \right]{\text{ = }}\left[ {\begin{array}{*{20}{c}}
{\text{2}} \\
{\text{1}} \\
{\text{6}}
\end{array}} \right]\]
${\text{AX = B}}$
Where A is the coefficient matrix, X is the variable matrix and B is the constant matrix
Now, calculating determinant of coefficient matrix,
$
\left| {\text{A}} \right|{\text{ = }}\left| {\begin{array}{*{20}{c}}
\Rightarrow{\text{1}}&{\text{1}}&{\text{1}} \\
\Rightarrow{\text{1}}&{\text{2}}&{\text{1}} \\
\Rightarrow{\text{5}}&{\text{1}}&{\text{1}}
\end{array}} \right| \\
\Rightarrow \left| {\text{A}} \right|{\text{ = 1 - 1}}\left( {{\text{ - 4}}} \right){\text{ + 1 - 10}} \\
\Rightarrow \left| {\text{A}} \right|{\text{ = 1 + 4 + 1 - 10}} \\
\Rightarrow \left| {\text{A}} \right|{\text{ = - 4}} \\
$
So,
Now, the Cramer’s rule for solving set of linear equations is
${\text{x = }}\dfrac{{\left| {{{\text{D}}_{\text{x}}}} \right|}}{{\left| {\text{D}} \right|}}$,
${\text{y = }}\dfrac{{\left| {{{\text{D}}_{\text{y}}}} \right|}}{{\left| {\text{D}} \right|}}$,
${\text{z = }}\dfrac{{\left| {{{\text{D}}_{\text{z}}}} \right|}}{{\left| {\text{D}} \right|}}$
Where, ${{\text{D}}_{\text{x}}}{\text{,}}{{\text{D}}_{\text{y}}}{\text{,}}{{\text{D}}_{\text{z}}}$can be obtained by replacing first, second and third column of coefficient matrix by constant matrix respectively.
Now,
\[
{{\text{D}}_{\text{x}}}{\text{ = }}\left[ {\begin{array}{*{20}{c}}
{\text{2}}&{\text{1}}&{\text{1}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{6}}&{\text{1}}&{\text{1}}
\end{array}} \right]{\text{,}} \\
{{\text{D}}_{\text{y}}}{\text{ = }}\left[ {\begin{array}{*{20}{c}}
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{1}}&{\text{1}}&{\text{1}} \\
{\text{5}}&{\text{6}}&{\text{1}}
\end{array}} \right]{\text{,}} \\
{{\text{D}}_{\text{z}}}{\text{ = }}\left[ {\begin{array}{*{20}{c}}
{\text{1}}&{\text{1}}&{\text{2}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{5}}&{\text{1}}&{\text{6}}
\end{array}} \right] \\
\]
Now, calculating determinant of above matrices,
\[
\left| {{{\text{D}}_{\text{x}}}} \right|{\text{ = }}\left| {\begin{array}{*{20}{c}}
{\text{2}}&{\text{1}}&{\text{1}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{6}}&{\text{1}}&{\text{1}}
\end{array}} \right|{\text{ = 2 + 5 - 11 = - 4}} \\
\left| {{{\text{D}}_{\text{y}}}} \right|{\text{ = }}\left| {\begin{array}{*{20}{c}}
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{1}}&{\text{1}}&{\text{1}} \\
{\text{5}}&{\text{6}}&{\text{1}}
\end{array}} \right|{\text{ = - 5 + 8 + 1 = 4}} \\
\left| {{{\text{D}}_{\text{z}}}} \right|{\text{ = }}\left| {\begin{array}{*{20}{c}}
{\text{1}}&{\text{1}}&{\text{2}} \\
{\text{1}}&{\text{2}}&{\text{1}} \\
{\text{5}}&{\text{1}}&{\text{6}}
\end{array}} \right|{\text{ = 11 - 1 - 18 = - 8}} \\
\]
${\text{x = }}\dfrac{{\left| {{{\text{D}}_{\text{x}}}} \right|}}{{\left| {\text{D}} \right|}}{\text{ = }}\dfrac{{{\text{ - 4}}}}{{{\text{ - 4}}}}{\text{ = 1}}$,
${\text{y = }}\dfrac{{\left| {{{\text{D}}_{\text{y}}}} \right|}}{{\left| {\text{D}} \right|}}{\text{ = }}\dfrac{{\text{4}}}{{{\text{ - 4}}}}{\text{ = - 1}}$,
${\text{z = }}\dfrac{{\left| {{{\text{D}}_{\text{z}}}} \right|}}{{\left| {\text{D}} \right|}}{\text{ = }}\dfrac{{{\text{ - 8}}}}{{{\text{ - 4}}}}{\text{ = 2}}$
Thus, solution is ${\text{x = 1,y = - 1,z = 2}}$
Hence, the required numbers are, 1, -1, 2
Note: A different approach to the question could be solving the linear equations simply by eliminating variables, if it was not mentioned to solve by Cramer’s rule. As we have
${\text{x + y + z = 2}}$ …(i)
${\text{x + 2y + z = 1}}$ …(ii)
${\text{5x + y + z = 6}}$ …(iii)
Subtracting (ii) from (i)
${\text{x + 2y + z - }}\left( {{\text{x + y + z}}} \right){\text{ = 1 - 2}}$
$\Rightarrow{\text{y = - 1}}$
Now, subtracting, (ii) from (iii)
${\text{5x + y + z - }}\left( {{\text{x + 2y + z}}} \right){\text{ = 6 - 1}}$
$\Rightarrow{\text{4x - y = 5}}$
Substituting, ${\text{y = - 1}}$
${\text{4x + 1 = 5}}$
$\Rightarrow{\text{4x = 4}}$
$\Rightarrow{\text{x = 1}}$
Now, we have
${\text{x + y + z = 2}}$
$\Rightarrow{\text{1 + }}\left( {{\text{ - 1}}} \right){\text{ + z = 2}}$
$\Rightarrow{\text{z = 2}}$
Thus, solution is ${\text{x = 1,y = - 1,z = 2}}$
Hence, this method is easy and less time consuming.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

