
The sum of the series ${\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - .....$ is
$A)1 - lo{g_e}2$
$B)1 + lo{g_e}2$
$C)lo{g_e}2$
$D)1 + lo{g_e}3$
Answer
497.7k+ views
Hint: First. We need to know about the concepts of logarithm operations.
We will first understand what the logarithmic operator represents in mathematics. A logarithm function or log operator is used when we have to deal with the powers of a number, to understand it better which is $\log {x^m} = m\log x$
Also, we will make use of the binomial expansion of the logarithm function which is given below.
Formula used:
> Using the logarithm law, \[{\log _y}x = \dfrac{{\log x}}{{\log y}}\]
> ${\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....$
> $\log {x^m} = m\log x$
Complete step-by-step solution:
Since given that we have the sum of the series ${\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - .....$ we will convert it into some form and then we will apply the logarithm formulas to obtain the result.
Since we know that \[{\log _y}x = \dfrac{{\log x}}{{\log y}}\] and by using this formula we get \[{\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - ..... \]
\[= \dfrac{{\log 3}}{{\log 9}} + \dfrac{{\log 3}}{{\log 27}} - \dfrac{{\log 3}}{{\log 81}} + \dfrac{{\log 3}}{{\log 243}} - ....\]
Since all the denominator terms are multiplications of the number $3$ then we are able to change all the numbers with respect to the square, cube, … of the number nine.
Thus, we have $9 = {3^2},27 = {3^3},81 = {3^4},243 = {3^5}$ and hence we get \[\dfrac{{\log 3}}{{\log 9}} + \dfrac{{\log 3}}{{\log 27}} - \dfrac{{\log 3}}{{\log 81}} + \dfrac{{\log 3}}{{\log 243}} - .... \]
\[= \dfrac{{\log 3}}{{\log {3^2}}} + \dfrac{{\log 3}}{{\log {3^3}}} - \dfrac{{\log 3}}{{\log {3^4}}} + \dfrac{{\log 3}}{{\log {3^5}}} - ...\]
Again, applying the logarithm formula of $\log {x^m} = m\log x$ then we get \[\dfrac{{\log 3}}{{\log {3^2}}} + \dfrac{{\log 3}}{{\log {3^3}}} - \dfrac{{\log 3}}{{\log {3^4}}} + \dfrac{{\log 3}}{{\log {3^5}}} - .... \]
\[= \dfrac{{\log 3}}{{2\log 3}} + \dfrac{{\log 3}}{{3\log 3}} - \dfrac{{\log 3}}{{4\log 3}} + \dfrac{{\log 3}}{{5\log 3}} - ...\]
Now cancel the common terms we have \[\dfrac{{\log 3}}{{2\log 3}} + \dfrac{{\log 3}}{{3\log 3}} - \dfrac{{\log 3}}{{4\log 3}} + \dfrac{{\log 3}}{{5\log 3}} - ... \]
\[= \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....\]
Now add and subtract $\dfrac{1}{2}$ on the above values, so that the value will not be changed and we are able to find its generalized form.
Thus, we get \[\dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... \]
\[= \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....\] and since $\dfrac{1}{2} + \dfrac{1}{2} = 1$
Then we have \[\dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... \]
\[= 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....\]
We know the binomial expansion of the logarithm is ${\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....$ substitute the value $x = 1$ then we get ${\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....$
$ = {\log _e}(1 + 1) = 1 - \dfrac{{{1^2}}}{2} + \dfrac{{{1^3}}}{3} - \dfrac{{{1^4}}}{4} + ....$
Thus, we clearly see the expansion that we found \[1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....\] and hence we get \[1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... = {\log _e}2\]
Therefore, the option $C)lo{g_e}2$ is correct.
Note: We simply substitute the value of $x = 1$ on the expansion then we get ${\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....$
$\Rightarrow {\log _e}(1 + 1) = 1 - \dfrac{{{1^2}}}{2} + \dfrac{{{1^3}}}{3} - \dfrac{{{1^4}}}{4} + ....$ but we need to find this simplification so that only we can able to substitute the value of $x = 1$ and then we easily obtained the required result
The logarithm function we used $\log {x^m} = m\log x$ and logarithm derivative function can be represented as $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
We will first understand what the logarithmic operator represents in mathematics. A logarithm function or log operator is used when we have to deal with the powers of a number, to understand it better which is $\log {x^m} = m\log x$
Also, we will make use of the binomial expansion of the logarithm function which is given below.
Formula used:
> Using the logarithm law, \[{\log _y}x = \dfrac{{\log x}}{{\log y}}\]
> ${\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....$
> $\log {x^m} = m\log x$
Complete step-by-step solution:
Since given that we have the sum of the series ${\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - .....$ we will convert it into some form and then we will apply the logarithm formulas to obtain the result.
Since we know that \[{\log _y}x = \dfrac{{\log x}}{{\log y}}\] and by using this formula we get \[{\log _9}3 + {\log _{27}}3 - {\log _{81}}3 + {\log _{243}}3 - ..... \]
\[= \dfrac{{\log 3}}{{\log 9}} + \dfrac{{\log 3}}{{\log 27}} - \dfrac{{\log 3}}{{\log 81}} + \dfrac{{\log 3}}{{\log 243}} - ....\]
Since all the denominator terms are multiplications of the number $3$ then we are able to change all the numbers with respect to the square, cube, … of the number nine.
Thus, we have $9 = {3^2},27 = {3^3},81 = {3^4},243 = {3^5}$ and hence we get \[\dfrac{{\log 3}}{{\log 9}} + \dfrac{{\log 3}}{{\log 27}} - \dfrac{{\log 3}}{{\log 81}} + \dfrac{{\log 3}}{{\log 243}} - .... \]
\[= \dfrac{{\log 3}}{{\log {3^2}}} + \dfrac{{\log 3}}{{\log {3^3}}} - \dfrac{{\log 3}}{{\log {3^4}}} + \dfrac{{\log 3}}{{\log {3^5}}} - ...\]
Again, applying the logarithm formula of $\log {x^m} = m\log x$ then we get \[\dfrac{{\log 3}}{{\log {3^2}}} + \dfrac{{\log 3}}{{\log {3^3}}} - \dfrac{{\log 3}}{{\log {3^4}}} + \dfrac{{\log 3}}{{\log {3^5}}} - .... \]
\[= \dfrac{{\log 3}}{{2\log 3}} + \dfrac{{\log 3}}{{3\log 3}} - \dfrac{{\log 3}}{{4\log 3}} + \dfrac{{\log 3}}{{5\log 3}} - ...\]
Now cancel the common terms we have \[\dfrac{{\log 3}}{{2\log 3}} + \dfrac{{\log 3}}{{3\log 3}} - \dfrac{{\log 3}}{{4\log 3}} + \dfrac{{\log 3}}{{5\log 3}} - ... \]
\[= \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....\]
Now add and subtract $\dfrac{1}{2}$ on the above values, so that the value will not be changed and we are able to find its generalized form.
Thus, we get \[\dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... \]
\[= \dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....\] and since $\dfrac{1}{2} + \dfrac{1}{2} = 1$
Then we have \[\dfrac{1}{2} + \dfrac{1}{2} - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... \]
\[= 1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....\]
We know the binomial expansion of the logarithm is ${\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....$ substitute the value $x = 1$ then we get ${\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....$
$ = {\log _e}(1 + 1) = 1 - \dfrac{{{1^2}}}{2} + \dfrac{{{1^3}}}{3} - \dfrac{{{1^4}}}{4} + ....$
Thus, we clearly see the expansion that we found \[1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - ....\] and hence we get \[1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - .... = {\log _e}2\]
Therefore, the option $C)lo{g_e}2$ is correct.
Note: We simply substitute the value of $x = 1$ on the expansion then we get ${\log _e}(1 + x) = x - \dfrac{{{x^2}}}{2} + \dfrac{{{x^3}}}{3} - \dfrac{{{x^4}}}{4} + ....$
$\Rightarrow {\log _e}(1 + 1) = 1 - \dfrac{{{1^2}}}{2} + \dfrac{{{1^3}}}{3} - \dfrac{{{1^4}}}{4} + ....$ but we need to find this simplification so that only we can able to substitute the value of $x = 1$ and then we easily obtained the required result
The logarithm function we used $\log {x^m} = m\log x$ and logarithm derivative function can be represented as $\dfrac{d}{{dx}}\log x = \dfrac{1}{x}$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

