
The sum of the series ${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-....+{}^{20}{{C}_{10}}$ is
A. $\dfrac{1}{2}{}^{20}{{C}_{10}}$
B. 0
C. $-{}^{20}{{C}_{10}}$
D. ${}^{20}{{C}_{10}}$
Answer
510.3k+ views
Hint: To solve this problem, first of all we can start solving this equation from ${{(1+x)}^{20}}$. When we expand this we will get ${}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+{}^{20}{{C}_{2}}{{x}^{2}}+{}^{20}{{C}_{3}}{{x}^{3}}+....+{}^{20}{{C}_{10}}{{x}^{20}}$. After this, we can replace the value of x with -1. Then expand the whole equation and we will get alternative positive and negative terms. We can use the equation such as ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$.
Complete step-by-step answer:
First of all, we can consider the equation ${{(1+x)}^{20}}$. The expansion of ${{(1+x)}^{20}}$ is,
${{(1+x)}^{20}}$ = ${}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+{}^{20}{{C}_{2}}{{x}^{2}}+{}^{20}{{C}_{3}}{{x}^{3}}+....+{}^{20}{{C}_{20}}{{x}^{20}}$
Now, we can put x = -1. So, we get,
${{(1+(-1))}^{20}}$ = ${}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}(-1)+{}^{20}{{C}_{2}}{{(-1)}^{2}}+{}^{20}{{C}_{3}}{{(-1)}^{3}}+....+{}^{20}{{C}_{20}}{{(-1)}^{20}}$
On expanding the above equation we get,
$0={}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....+{}^{20}{{C}_{20}}$
We can rewrite this equation using the equation ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$. This, means ${}^{20}{{C}_{0}}={}^{20}{{C}_{20}},{}^{20}{{C}_{1}}={}^{20}{{C}_{19}}.....{}^{20}{{C}_{9}}={}^{20}{{C}_{11}}$.
So, the equation becomes,
$0=2({}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}})+{}^{20}{{C}_{10}}$
On further solving, we get,
$-{}^{20}{{C}_{10}}=2({}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}})$
So, we get,
$\dfrac{-{}^{20}{{C}_{10}}}{2}={}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}}$
Now, we are asked to find the value of ${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-....+{}^{20}{{C}_{10}}$. So, we can write this equation as,
${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}}+{}^{20}{{C}_{10}}$= $\dfrac{-{}^{20}{{C}_{10}}}{2}+{}^{20}{{C}_{10}}$
On solving get,
${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}}+{}^{20}{{C}_{10}}$= $\dfrac{{}^{20}{{C}_{10}}}{2}$
So, the correct answer is “Option A”.
Note: In this problem, we have started solving using the ${{(1+x)}^{20}}$. This is used so that we can easily solve the problem. We know that ${{(1+x)}^{20}}$ = ${}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+{}^{20}{{C}_{2}}{{x}^{2}}+{}^{20}{{C}_{3}}{{x}^{3}}+....+{}^{20}{{C}_{20}}{{x}^{20}}$. Here, x is replaced by -1 because in the question the terms are in alternate positive and negative terms. We have used few general equation of the combination and that is ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$. This equation help us to add the common terms in series. ${}^{20}{{C}_{10}}={}^{20}{{C}_{10}}$ so we got $2({}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}})+{}^{20}{{C}_{10}}$. In the last step, we added ${}^{20}{{C}_{10}}$ to $\dfrac{-{}^{20}{{C}_{10}}}{2}$ because $\dfrac{-{}^{20}{{C}_{10}}}{2}$ is the value of the terms ${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}}$. As we are asked to find the value of ${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-....+{}^{20}{{C}_{10}}$ we have to add ${}^{20}{{C}_{10}}$ to $\dfrac{-{}^{20}{{C}_{10}}}{2}$.
Complete step-by-step answer:
First of all, we can consider the equation ${{(1+x)}^{20}}$. The expansion of ${{(1+x)}^{20}}$ is,
${{(1+x)}^{20}}$ = ${}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+{}^{20}{{C}_{2}}{{x}^{2}}+{}^{20}{{C}_{3}}{{x}^{3}}+....+{}^{20}{{C}_{20}}{{x}^{20}}$
Now, we can put x = -1. So, we get,
${{(1+(-1))}^{20}}$ = ${}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}(-1)+{}^{20}{{C}_{2}}{{(-1)}^{2}}+{}^{20}{{C}_{3}}{{(-1)}^{3}}+....+{}^{20}{{C}_{20}}{{(-1)}^{20}}$
On expanding the above equation we get,
$0={}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....+{}^{20}{{C}_{20}}$
We can rewrite this equation using the equation ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$. This, means ${}^{20}{{C}_{0}}={}^{20}{{C}_{20}},{}^{20}{{C}_{1}}={}^{20}{{C}_{19}}.....{}^{20}{{C}_{9}}={}^{20}{{C}_{11}}$.
So, the equation becomes,
$0=2({}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}})+{}^{20}{{C}_{10}}$
On further solving, we get,
$-{}^{20}{{C}_{10}}=2({}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}})$
So, we get,
$\dfrac{-{}^{20}{{C}_{10}}}{2}={}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}}$
Now, we are asked to find the value of ${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-....+{}^{20}{{C}_{10}}$. So, we can write this equation as,
${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}}+{}^{20}{{C}_{10}}$= $\dfrac{-{}^{20}{{C}_{10}}}{2}+{}^{20}{{C}_{10}}$
On solving get,
${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}}+{}^{20}{{C}_{10}}$= $\dfrac{{}^{20}{{C}_{10}}}{2}$
So, the correct answer is “Option A”.
Note: In this problem, we have started solving using the ${{(1+x)}^{20}}$. This is used so that we can easily solve the problem. We know that ${{(1+x)}^{20}}$ = ${}^{20}{{C}_{0}}+{}^{20}{{C}_{1}}x+{}^{20}{{C}_{2}}{{x}^{2}}+{}^{20}{{C}_{3}}{{x}^{3}}+....+{}^{20}{{C}_{20}}{{x}^{20}}$. Here, x is replaced by -1 because in the question the terms are in alternate positive and negative terms. We have used few general equation of the combination and that is ${}^{n}{{C}_{r}}={}^{n}{{C}_{n-r}}$. This equation help us to add the common terms in series. ${}^{20}{{C}_{10}}={}^{20}{{C}_{10}}$ so we got $2({}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}})+{}^{20}{{C}_{10}}$. In the last step, we added ${}^{20}{{C}_{10}}$ to $\dfrac{-{}^{20}{{C}_{10}}}{2}$ because $\dfrac{-{}^{20}{{C}_{10}}}{2}$ is the value of the terms ${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-{}^{20}{{C}_{9}}$. As we are asked to find the value of ${}^{20}{{C}_{0}}-{}^{20}{{C}_{1}}+{}^{20}{{C}_{2}}-{}^{20}{{C}_{3}}+....-....+{}^{20}{{C}_{10}}$ we have to add ${}^{20}{{C}_{10}}$ to $\dfrac{-{}^{20}{{C}_{10}}}{2}$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Which are the Top 10 Largest Countries of the World?

Why is insulin not administered orally to a diabetic class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
