
The sum of the series $1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $ is given by
A) ${n^2} + 1$
B) $n(n + 1)$
C) $n{\left( {1 + \dfrac{1}{n}} \right)^2}$
D) ${n^2}$
Answer
547.8k+ views
Hint: For an infinite series ${a_1} + {a_2} + {a_3} + ... + \infty $, a quantity ${S_n} = {a_1} + {a_2} + {a_3} + ... + {a_n}$, which involves adding only the first n terms, is called a partial sum of the series. If ${S_n}$ approaches a fixed number S as n becomes larger and larger, the series is said to converge. In this case, S is called the sum of the series.
First, multiply infinite series with $\left( {1 + \dfrac{1}{n}} \right)$. Then subtract both the series. First, simplify the left-hand side and then the right-hand side. Solve the equations with the help of LCM. Then Combine both sides and we will get the final answer. We will use the formula as stated below:
$1 + \left( {1 + \dfrac{1}{n}} \right) + {\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty = \dfrac{1}{{1 - \left( {1 + \dfrac{1}{n}} \right)}}$
Complete step-by-step solution:
The given infinite series is,
$ \Rightarrow {S_n} = 1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $
Let us multiply $\left( {1 + \dfrac{1}{n}} \right)$ both sides.
Therefore,
$ \Rightarrow \left( {1 + \dfrac{1}{n}} \right){S_n} = \left( {1 + \dfrac{1}{n}} \right) + 2{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $
Now, we will subtract ${S_n}$ and$\left( {1 + \dfrac{1}{n}} \right){S_n}$ .
Hence, the left-hand side is.
$ \Rightarrow {S_n} - \left( {1 + \dfrac{1}{n}} \right){S_n}$
Solve the above equation.
$ \Rightarrow {S_n} - {S_n} - \left( {\dfrac{1}{n}} \right){S_n}$
So, we get.
$ \Rightarrow - \left( {\dfrac{1}{n}} \right){S_n}$
Now, we will subtract $1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $ and$\left( {1 + \dfrac{1}{n}} \right) + 2{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $ .
Hence, the right-hand side is.
$ \Rightarrow \left[ {1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{{\left( {1 + \dfrac{1}{n}} \right)}^2} + ... + \infty } \right] - \left[ {\left( {1 + \dfrac{1}{n}} \right) + 2{{\left( {1 + \dfrac{1}{n}} \right)}^2} + ... + \infty } \right]$
Let us subtract the above step.
$ \Rightarrow 1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty - \left( {1 + \dfrac{1}{n}} \right) - 2{\left( {1 + \dfrac{1}{n}} \right)^2} - ... - \infty $
Therefore, the answer will be.
$ \Rightarrow 1 + \left( {1 + \dfrac{1}{n}} \right) + {\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $
As we already know, the value of $1 + \left( {1 + \dfrac{1}{n}} \right) + {\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $ is $\dfrac{1}{{1 - \left( {1 + \dfrac{1}{n}} \right)}}$
So, we put that value.
$ \Rightarrow \dfrac{1}{{1 - \left( {1 + \dfrac{1}{n}} \right)}}$
Let us simplify.
$ \Rightarrow \dfrac{1}{{1 - \left( {\dfrac{{n + 1}}{n}} \right)}}$
Let us take LCM.
$ \Rightarrow \dfrac{1}{{\left( {\dfrac{{n - n - 1}}{n}} \right)}}$
So, we will get it.
$ \Rightarrow \dfrac{1}{{\left( {\dfrac{{ - 1}}{n}} \right)}}$
Therefore,
$ \Rightarrow - n$
Now, let us combine the left-hand side and right-hand side.
So, we will get it.
$ \Rightarrow - \left( {\dfrac{1}{n}} \right){S_n} = - n$
Multiply both sides by$ - n$ .
$ \Rightarrow {S_n} = {n^2}$
Hence, the final answer is ${n^2}$ .
Option D is the correct answer.
Note: The simplest way to express a result is as a series. To get the numerical value only we need to compute the value. For that, we have to remember the infinite series formula. Here, we use the formula$1 + \left( {1 + \dfrac{1}{n}} \right) + {\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty = \dfrac{1}{{1 - \left( {1 + \dfrac{1}{n}} \right)}}$. Make sure that the LCM of two or more numbers is greater than or equal to the greatest number of given numbers.
First, multiply infinite series with $\left( {1 + \dfrac{1}{n}} \right)$. Then subtract both the series. First, simplify the left-hand side and then the right-hand side. Solve the equations with the help of LCM. Then Combine both sides and we will get the final answer. We will use the formula as stated below:
$1 + \left( {1 + \dfrac{1}{n}} \right) + {\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty = \dfrac{1}{{1 - \left( {1 + \dfrac{1}{n}} \right)}}$
Complete step-by-step solution:
The given infinite series is,
$ \Rightarrow {S_n} = 1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $
Let us multiply $\left( {1 + \dfrac{1}{n}} \right)$ both sides.
Therefore,
$ \Rightarrow \left( {1 + \dfrac{1}{n}} \right){S_n} = \left( {1 + \dfrac{1}{n}} \right) + 2{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $
Now, we will subtract ${S_n}$ and$\left( {1 + \dfrac{1}{n}} \right){S_n}$ .
Hence, the left-hand side is.
$ \Rightarrow {S_n} - \left( {1 + \dfrac{1}{n}} \right){S_n}$
Solve the above equation.
$ \Rightarrow {S_n} - {S_n} - \left( {\dfrac{1}{n}} \right){S_n}$
So, we get.
$ \Rightarrow - \left( {\dfrac{1}{n}} \right){S_n}$
Now, we will subtract $1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $ and$\left( {1 + \dfrac{1}{n}} \right) + 2{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $ .
Hence, the right-hand side is.
$ \Rightarrow \left[ {1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{{\left( {1 + \dfrac{1}{n}} \right)}^2} + ... + \infty } \right] - \left[ {\left( {1 + \dfrac{1}{n}} \right) + 2{{\left( {1 + \dfrac{1}{n}} \right)}^2} + ... + \infty } \right]$
Let us subtract the above step.
$ \Rightarrow 1 + 2\left( {1 + \dfrac{1}{n}} \right) + 3{\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty - \left( {1 + \dfrac{1}{n}} \right) - 2{\left( {1 + \dfrac{1}{n}} \right)^2} - ... - \infty $
Therefore, the answer will be.
$ \Rightarrow 1 + \left( {1 + \dfrac{1}{n}} \right) + {\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $
As we already know, the value of $1 + \left( {1 + \dfrac{1}{n}} \right) + {\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty $ is $\dfrac{1}{{1 - \left( {1 + \dfrac{1}{n}} \right)}}$
So, we put that value.
$ \Rightarrow \dfrac{1}{{1 - \left( {1 + \dfrac{1}{n}} \right)}}$
Let us simplify.
$ \Rightarrow \dfrac{1}{{1 - \left( {\dfrac{{n + 1}}{n}} \right)}}$
Let us take LCM.
$ \Rightarrow \dfrac{1}{{\left( {\dfrac{{n - n - 1}}{n}} \right)}}$
So, we will get it.
$ \Rightarrow \dfrac{1}{{\left( {\dfrac{{ - 1}}{n}} \right)}}$
Therefore,
$ \Rightarrow - n$
Now, let us combine the left-hand side and right-hand side.
So, we will get it.
$ \Rightarrow - \left( {\dfrac{1}{n}} \right){S_n} = - n$
Multiply both sides by$ - n$ .
$ \Rightarrow {S_n} = {n^2}$
Hence, the final answer is ${n^2}$ .
Option D is the correct answer.
Note: The simplest way to express a result is as a series. To get the numerical value only we need to compute the value. For that, we have to remember the infinite series formula. Here, we use the formula$1 + \left( {1 + \dfrac{1}{n}} \right) + {\left( {1 + \dfrac{1}{n}} \right)^2} + ... + \infty = \dfrac{1}{{1 - \left( {1 + \dfrac{1}{n}} \right)}}$. Make sure that the LCM of two or more numbers is greater than or equal to the greatest number of given numbers.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

