
The sum of the infinite series $ {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + \ldots \ldots \infty $ is equal to
A. $ \dfrac{\pi }{4} $
B. $ \dfrac{\pi }{3} $
C. $ \dfrac{\pi }{6} $
D. $ \dfrac{\pi }{8} $
Answer
541.8k+ views
Hint: Observe the series carefully and take it to the form of the summation series and replace the cotangent by tangent and try to make the tangent inverse identity for that take minor small steps in the numerator and the denominator.
Complete step-by-step answer:
The given statement is $ {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + \ldots \ldots \infty $
On observing the numbers which are $ 2,8,18,32 \ldots \ldots \infty $ we come to know that the series if of the form of $ \sum {2{r^2}} $ here $ r $ is a natural number.
So, replacing the given series with $ \sum\limits_{r = 1}^\infty {{{\cot }^{ - 1}}\left( {2{r^2}} \right)} $
Using the property of trigonometric functions that the cotangent is inverse of tangent.
$ \sum\limits_{r = 1}^\infty {{{\cot }^{ - 1}}\left( {2{r^2}} \right)} = \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{r^2}}}} \right)} $
Now, I am doing some changes in the angle of tangent,
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{r^2}}}} \right)} $
Multiply and divide the angle of tangent by $ 2 $
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{4{r^2}}}} \right)} $
Now, adding and subtracting $ 1 $ in the denominator
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{1 + 4{r^2} - 1}}} \right)} $
Now, forming the identity in the denominator $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{1 + \left( {2r + 1} \right)\left( {2r - 1} \right)}}} \right)} $
Now, adding and subtracting $ 2r $ in the numerator and writing $ 2 = 1 + 1 $
So, $ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {2r + 1} \right) - \left( {2r - 1} \right)}}{{1 + \left( {2r + 1} \right)\left( {2r - 1} \right)}}} \right)} $
All these steps come to form the identity of tangent that $ {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) = {\tan ^{ - 1}}x - {\tan ^{ - 1}}y $
Here $ x = 2r + 1,y = 2r - 1 $
Hence, we are left with $ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {2r + 1} \right) - \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {2r - 1} \right)} } $
To solve the same taking the limits $ n \to \infty $
$ \lim \mathop {}\nolimits_{n \to \infty } \left[ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {2r + 1} \right) - \sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {2r - 1} \right)} } } \right] $
$
{\tan ^{ - 1}}\infty - {\tan ^{ - 1}}1 \\
= \dfrac{\pi }{2} - \dfrac{\pi }{4} = \dfrac{\pi }{4} \;
$
So, the correct option is A.
So, the correct answer is “Option A”.
Note: In mathematics, firstly observe which formulas would take you one step closer to the solution and then proceed by taking the right steps. It Is not like that you have to learn the steps but we can form your own unique steps too.
Complete step-by-step answer:
The given statement is $ {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + \ldots \ldots \infty $
On observing the numbers which are $ 2,8,18,32 \ldots \ldots \infty $ we come to know that the series if of the form of $ \sum {2{r^2}} $ here $ r $ is a natural number.
So, replacing the given series with $ \sum\limits_{r = 1}^\infty {{{\cot }^{ - 1}}\left( {2{r^2}} \right)} $
Using the property of trigonometric functions that the cotangent is inverse of tangent.
$ \sum\limits_{r = 1}^\infty {{{\cot }^{ - 1}}\left( {2{r^2}} \right)} = \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{r^2}}}} \right)} $
Now, I am doing some changes in the angle of tangent,
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{r^2}}}} \right)} $
Multiply and divide the angle of tangent by $ 2 $
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{4{r^2}}}} \right)} $
Now, adding and subtracting $ 1 $ in the denominator
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{1 + 4{r^2} - 1}}} \right)} $
Now, forming the identity in the denominator $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{1 + \left( {2r + 1} \right)\left( {2r - 1} \right)}}} \right)} $
Now, adding and subtracting $ 2r $ in the numerator and writing $ 2 = 1 + 1 $
So, $ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {2r + 1} \right) - \left( {2r - 1} \right)}}{{1 + \left( {2r + 1} \right)\left( {2r - 1} \right)}}} \right)} $
All these steps come to form the identity of tangent that $ {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) = {\tan ^{ - 1}}x - {\tan ^{ - 1}}y $
Here $ x = 2r + 1,y = 2r - 1 $
Hence, we are left with $ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {2r + 1} \right) - \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {2r - 1} \right)} } $
To solve the same taking the limits $ n \to \infty $
$ \lim \mathop {}\nolimits_{n \to \infty } \left[ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {2r + 1} \right) - \sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {2r - 1} \right)} } } \right] $
$
{\tan ^{ - 1}}\infty - {\tan ^{ - 1}}1 \\
= \dfrac{\pi }{2} - \dfrac{\pi }{4} = \dfrac{\pi }{4} \;
$
So, the correct option is A.
So, the correct answer is “Option A”.
Note: In mathematics, firstly observe which formulas would take you one step closer to the solution and then proceed by taking the right steps. It Is not like that you have to learn the steps but we can form your own unique steps too.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

