
The sum of the infinite series $ {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + \ldots \ldots \infty $ is equal to
A. $ \dfrac{\pi }{4} $
B. $ \dfrac{\pi }{3} $
C. $ \dfrac{\pi }{6} $
D. $ \dfrac{\pi }{8} $
Answer
526.8k+ views
Hint: Observe the series carefully and take it to the form of the summation series and replace the cotangent by tangent and try to make the tangent inverse identity for that take minor small steps in the numerator and the denominator.
Complete step-by-step answer:
The given statement is $ {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + \ldots \ldots \infty $
On observing the numbers which are $ 2,8,18,32 \ldots \ldots \infty $ we come to know that the series if of the form of $ \sum {2{r^2}} $ here $ r $ is a natural number.
So, replacing the given series with $ \sum\limits_{r = 1}^\infty {{{\cot }^{ - 1}}\left( {2{r^2}} \right)} $
Using the property of trigonometric functions that the cotangent is inverse of tangent.
$ \sum\limits_{r = 1}^\infty {{{\cot }^{ - 1}}\left( {2{r^2}} \right)} = \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{r^2}}}} \right)} $
Now, I am doing some changes in the angle of tangent,
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{r^2}}}} \right)} $
Multiply and divide the angle of tangent by $ 2 $
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{4{r^2}}}} \right)} $
Now, adding and subtracting $ 1 $ in the denominator
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{1 + 4{r^2} - 1}}} \right)} $
Now, forming the identity in the denominator $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{1 + \left( {2r + 1} \right)\left( {2r - 1} \right)}}} \right)} $
Now, adding and subtracting $ 2r $ in the numerator and writing $ 2 = 1 + 1 $
So, $ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {2r + 1} \right) - \left( {2r - 1} \right)}}{{1 + \left( {2r + 1} \right)\left( {2r - 1} \right)}}} \right)} $
All these steps come to form the identity of tangent that $ {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) = {\tan ^{ - 1}}x - {\tan ^{ - 1}}y $
Here $ x = 2r + 1,y = 2r - 1 $
Hence, we are left with $ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {2r + 1} \right) - \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {2r - 1} \right)} } $
To solve the same taking the limits $ n \to \infty $
$ \lim \mathop {}\nolimits_{n \to \infty } \left[ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {2r + 1} \right) - \sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {2r - 1} \right)} } } \right] $
$
{\tan ^{ - 1}}\infty - {\tan ^{ - 1}}1 \\
= \dfrac{\pi }{2} - \dfrac{\pi }{4} = \dfrac{\pi }{4} \;
$
So, the correct option is A.
So, the correct answer is “Option A”.
Note: In mathematics, firstly observe which formulas would take you one step closer to the solution and then proceed by taking the right steps. It Is not like that you have to learn the steps but we can form your own unique steps too.
Complete step-by-step answer:
The given statement is $ {\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + \ldots \ldots \infty $
On observing the numbers which are $ 2,8,18,32 \ldots \ldots \infty $ we come to know that the series if of the form of $ \sum {2{r^2}} $ here $ r $ is a natural number.
So, replacing the given series with $ \sum\limits_{r = 1}^\infty {{{\cot }^{ - 1}}\left( {2{r^2}} \right)} $
Using the property of trigonometric functions that the cotangent is inverse of tangent.
$ \sum\limits_{r = 1}^\infty {{{\cot }^{ - 1}}\left( {2{r^2}} \right)} = \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{r^2}}}} \right)} $
Now, I am doing some changes in the angle of tangent,
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{1}{{2{r^2}}}} \right)} $
Multiply and divide the angle of tangent by $ 2 $
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{4{r^2}}}} \right)} $
Now, adding and subtracting $ 1 $ in the denominator
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{1 + 4{r^2} - 1}}} \right)} $
Now, forming the identity in the denominator $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
$ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{2}{{1 + \left( {2r + 1} \right)\left( {2r - 1} \right)}}} \right)} $
Now, adding and subtracting $ 2r $ in the numerator and writing $ 2 = 1 + 1 $
So, $ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {\dfrac{{\left( {2r + 1} \right) - \left( {2r - 1} \right)}}{{1 + \left( {2r + 1} \right)\left( {2r - 1} \right)}}} \right)} $
All these steps come to form the identity of tangent that $ {\tan ^{ - 1}}\left( {\dfrac{{x - y}}{{1 + xy}}} \right) = {\tan ^{ - 1}}x - {\tan ^{ - 1}}y $
Here $ x = 2r + 1,y = 2r - 1 $
Hence, we are left with $ \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {2r + 1} \right) - \sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}\left( {2r - 1} \right)} } $
To solve the same taking the limits $ n \to \infty $
$ \lim \mathop {}\nolimits_{n \to \infty } \left[ {\sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {2r + 1} \right) - \sum\limits_{r = 1}^n {{{\tan }^{ - 1}}\left( {2r - 1} \right)} } } \right] $
$
{\tan ^{ - 1}}\infty - {\tan ^{ - 1}}1 \\
= \dfrac{\pi }{2} - \dfrac{\pi }{4} = \dfrac{\pi }{4} \;
$
So, the correct option is A.
So, the correct answer is “Option A”.
Note: In mathematics, firstly observe which formulas would take you one step closer to the solution and then proceed by taking the right steps. It Is not like that you have to learn the steps but we can form your own unique steps too.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

