
The sum of \[\sum\limits_{k=1}^{100}{\dfrac{k}{{{k}^{4}}+{{k}^{2}}+1}}\] is equal to
A) \[\dfrac{4950}{10101}\]
B) \[\dfrac{5050}{10101}\]
C) \[\dfrac{5151}{10101}\]
D) None of these
Answer
579.6k+ views
Hint: In order to solve this question first we will use the property of sigma expansion and find the sum by using polynomial identities and the polynomial formula to simplify the Expression:
\[{{x}^{4}}+{{x}^{2}}+1=[({{x}^{2}}+1)+x][({{x}^{2}}+1)x]\]
\[={{({{x}^{2}}+1)}^{2}}{{(x)}^{2}}\]
\[={{x}^{4}}+1+2{{x}^{2}}{{x}^{2}}\]
\[={{x}^{4}}+{{x}^{2}}+1\]
Sigma expansion shows the sum of the series when put the limit of sigma in the expression. Summation of series means we add all the terms of the series that expands with the help of sigma expansion so we can identify the type of series and use the proper formula.
Complete step by step answer:
By using the formula of the polynomial we get,
\[{{k}^{4}}+{{k}^{2}}+1=[({{k}^{2}}+1)+k][({{k}^{2}}+1)k]\]
Simplify the expression using algebraic identity
\[={{({{k}^{2}}+1)}^{2}}{{k}^{2}}\]
Rewrite the expression after open the square
\[={{k}^{4}}+1+2{{k}^{2}}{{k}^{2}}\]
Rewrite the expression after simplification
\[={{k}^{4}}+{{k}^{2}}+1\]
We can also write the expression in the form
\[{{k}^{2}}+k+1{{k}^{2}}+k-1=2k\ \ldots \ldots \left( 1 \right)\]
Now, from the given expression
\[\Rightarrow \sum\limits_{k=1}^{100}{\dfrac{k}{{{k}^{4}}+{{k}^{2}}+1}}\]
Now, Substitute the value of \[{{k}^{4}}+{{k}^{2}}+1\] in the given expression
\[\Rightarrow \sum\limits_{k=1}^{100}{\dfrac{k}{({{k}^{2}}+1+k)({{k}^{2}}+1k)}}\]
Rewrite the expression after multiplication and division by \[2\]
\[\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\dfrac{2k}{({{k}^{2}}+1+k)({{k}^{2}}k1)}}\]
Substitute the value of \[2k\] from the equation (1) in the expression
\[\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\dfrac{({{k}^{2}}+k+1)({{k}^{2}}k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)}}\]
Simplify the expression by dividing the numerator by denominator
\[\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\left\{ \dfrac{({{k}^{2}}+k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)}-\dfrac{({{k}^{2}}k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)} \right\}}\]
Rewrite the expression after simplification
\[\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\left[ \dfrac{1}{{{k}^{2}}k+1}\dfrac{1}{{{k}^{2}}+k+1} \right]}\]
Put the value of limit and use the sigma expansion
\[\Rightarrow \dfrac{1}{2}\left[ \dfrac{1}{1}\dfrac{1}{3}+\dfrac{1}{3}+.........+\dfrac{1}{10101} \right]\]
Rewrite the expression after simplification
\[\Rightarrow \dfrac{1}{2}\left[ 1\dfrac{1}{10101} \right]\]
Again rewrite the expression after simplification
\[\Rightarrow \dfrac{1}{2}\left[ \dfrac{10101-1}{10101} \right]\]
Rewrite the expression after simplification
\[\Rightarrow \dfrac{1}{2}\left[ \dfrac{10100}{10101} \right]\]
Rewrite the expression after simplification
\[\therefore \left[ \dfrac{5050}{10101} \right]\]
Hence, option (B) is the correct answer.
Note:
Sigma expansion shows the sum of the series when put the limit of sigma in the expansion as
\[\sum\limits_{k=1}^{n}{k}=1+2+3\ \ldots \ldots +n\]
\[1+2+3\ \ldots \ldots +n=\dfrac{n\left( n+1 \right)}{2}\]
We can also solve this problem by direct expansion by using the polynomial concept
\[{{x}^{4}}+{{x}^{2}}+1=[({{x}^{2}}+1)+x[({{x}^{2}}+1)x]\]
This is the form of polynomial making in the perfect square type.
\[{{x}^{4}}+{{x}^{2}}+1=[({{x}^{2}}+1)+x][({{x}^{2}}+1)x]\]
\[={{({{x}^{2}}+1)}^{2}}{{(x)}^{2}}\]
\[={{x}^{4}}+1+2{{x}^{2}}{{x}^{2}}\]
\[={{x}^{4}}+{{x}^{2}}+1\]
Sigma expansion shows the sum of the series when put the limit of sigma in the expression. Summation of series means we add all the terms of the series that expands with the help of sigma expansion so we can identify the type of series and use the proper formula.
Complete step by step answer:
By using the formula of the polynomial we get,
\[{{k}^{4}}+{{k}^{2}}+1=[({{k}^{2}}+1)+k][({{k}^{2}}+1)k]\]
Simplify the expression using algebraic identity
\[={{({{k}^{2}}+1)}^{2}}{{k}^{2}}\]
Rewrite the expression after open the square
\[={{k}^{4}}+1+2{{k}^{2}}{{k}^{2}}\]
Rewrite the expression after simplification
\[={{k}^{4}}+{{k}^{2}}+1\]
We can also write the expression in the form
\[{{k}^{2}}+k+1{{k}^{2}}+k-1=2k\ \ldots \ldots \left( 1 \right)\]
Now, from the given expression
\[\Rightarrow \sum\limits_{k=1}^{100}{\dfrac{k}{{{k}^{4}}+{{k}^{2}}+1}}\]
Now, Substitute the value of \[{{k}^{4}}+{{k}^{2}}+1\] in the given expression
\[\Rightarrow \sum\limits_{k=1}^{100}{\dfrac{k}{({{k}^{2}}+1+k)({{k}^{2}}+1k)}}\]
Rewrite the expression after multiplication and division by \[2\]
\[\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\dfrac{2k}{({{k}^{2}}+1+k)({{k}^{2}}k1)}}\]
Substitute the value of \[2k\] from the equation (1) in the expression
\[\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\dfrac{({{k}^{2}}+k+1)({{k}^{2}}k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)}}\]
Simplify the expression by dividing the numerator by denominator
\[\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\left\{ \dfrac{({{k}^{2}}+k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)}-\dfrac{({{k}^{2}}k+1)}{({{k}^{2}}+k+1)({{k}^{2}}k+1)} \right\}}\]
Rewrite the expression after simplification
\[\Rightarrow \dfrac{1}{2}\sum\limits_{k=1}^{100}{\left[ \dfrac{1}{{{k}^{2}}k+1}\dfrac{1}{{{k}^{2}}+k+1} \right]}\]
Put the value of limit and use the sigma expansion
\[\Rightarrow \dfrac{1}{2}\left[ \dfrac{1}{1}\dfrac{1}{3}+\dfrac{1}{3}+.........+\dfrac{1}{10101} \right]\]
Rewrite the expression after simplification
\[\Rightarrow \dfrac{1}{2}\left[ 1\dfrac{1}{10101} \right]\]
Again rewrite the expression after simplification
\[\Rightarrow \dfrac{1}{2}\left[ \dfrac{10101-1}{10101} \right]\]
Rewrite the expression after simplification
\[\Rightarrow \dfrac{1}{2}\left[ \dfrac{10100}{10101} \right]\]
Rewrite the expression after simplification
\[\therefore \left[ \dfrac{5050}{10101} \right]\]
Hence, option (B) is the correct answer.
Note:
Sigma expansion shows the sum of the series when put the limit of sigma in the expansion as
\[\sum\limits_{k=1}^{n}{k}=1+2+3\ \ldots \ldots +n\]
\[1+2+3\ \ldots \ldots +n=\dfrac{n\left( n+1 \right)}{2}\]
We can also solve this problem by direct expansion by using the polynomial concept
\[{{x}^{4}}+{{x}^{2}}+1=[({{x}^{2}}+1)+x[({{x}^{2}}+1)x]\]
This is the form of polynomial making in the perfect square type.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

