
The sum of ‘n’ terms of two arithmetic progressions is in ratio $5n+4:9n+6$. find the ratio of their ${18}^{\text{th}}$ terms:
Answer
486.3k+ views
Hint: In this problem, we will be using the concept of the sum of an arithmetic progression (A.P). In order to solve this question, we divide the sum of n terms of the two arithmetic progression(A.P) with each other and equate it with $5n+4:9n+6$.
Now we will try to get the equation in the form of the ${\text{n}}^{\text{th}}$ term of an A.P and will find the values for ‘n’. Upon putting that value of ‘n’ in $5n+4:9n+6$. We can calculate the ratio of the ${18}^{\text{th}}$ term of two given A.P.
Complete step by step solution: As mentioned in the question, there are two arithmetic progressions with different first terms and different common differences.
For the first A⋅P:-
Let the first term of A⋅P be = a, and the common difference be = d;
So, Sum of ‘n’ terms of an A⋅P is;
${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$
and the nth term of an A⋅P is;
${{a}_{n}}=a+\left( n-1 \right)d$
For the second A⋅P:-
Let the first term of A⋅P. be = A and the common difference be = D;
So, the sum of its ‘n’ terms will be;
${{S}_{n}}=\dfrac{n}{2}\left[ 2A+\left( n-1 \right)D \right]$
And the nth term of an A⋅P is;
${{A}_{n}}=A+\left( n-1 \right)D$
It’s given in the question that the ratio of the sum of ‘n’ terms of the two AP is $5n+4:\ 9n+6;$
$\Rightarrow \dfrac{\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]}{\dfrac{n}{2}\left[ 2\text{A}+\left( n-1 \right)\text{D} \right]}=\dfrac{5n+4}{9n+6}$
$\Rightarrow \dfrac{\left[ 2a+\left( n-1 \right)d \right]}{\left[ 2A+\left( n-1 \right)d \right]}=\dfrac{5n+4}{9n+6}$
Taking L.H.S;
When we take ‘2’ common in numerator and denominator;
\[=\dfrac{2\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{2\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}\]
$=\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}$
So, now;
\[\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}\] (1)
We need to find the ratio of the 18th term of Arithmetic progression:
\[=\dfrac{18\text{th}\ \text{term}\ \text{of}\ \text{1st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ \text{2nd}\ \text{A}\cdot \text{P}}\]
$\dfrac{{{a}_{18}}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{{{A}_{18}}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}$
$=\dfrac{a+\left( 18-1 \right)d}{A+\left( 18-1 \right)D}$
$=\dfrac{a+17d}{A+17D}$ (2)
Comparing equation (2) with equation (1); $a+17d=a+\left( \dfrac{n-1}{2} \right)d$
$\Rightarrow 17=\dfrac{n-1}{2}$
$\Rightarrow n-1=17\times 2$
$\Rightarrow n-1=34$
$\Rightarrow n=34+1$
$\Rightarrow n=35$
Now, putting $n=35$ in equation (1);
\[\Rightarrow \dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}\]
$\Rightarrow \dfrac{a+\left( \dfrac{35-1}{2} \right)d}{A+\left( \dfrac{35-1}{2} \right)D}=\dfrac{5\left( 35 \right)+4}{9\left( 35 \right)+6}$
$\Rightarrow \dfrac{a+\left( \dfrac{34}{2} \right)d}{A+\left( \dfrac{34}{2} \right)D}=\dfrac{175+4}{315+6}$
$\Rightarrow \dfrac{a+17d}{A+17D}=\dfrac{179}{321}$
Therefore, $\dfrac{18\text{th}\ \text{term}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}=\dfrac{179}{321}$
Hence, the ratio of ${18}^{\text{th}}$ term of ${1}^{\text{st}}$ A⋅P and ${18}^{\text{th}}$ term of ${2}^{\text{nd}}$ A⋅P is 179: 321.
Note: The sum of the ‘n’ terms of any A⋅P is ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ and ${n}^{\text{th}}$ term of an A⋅P is ${{a}_{n}}=a+\left( n-1 \right)d$ where ‘a’ is the first term of an A.P and ‘d’ is common difference of an A.P.
Now we will try to get the equation in the form of the ${\text{n}}^{\text{th}}$ term of an A.P and will find the values for ‘n’. Upon putting that value of ‘n’ in $5n+4:9n+6$. We can calculate the ratio of the ${18}^{\text{th}}$ term of two given A.P.
Complete step by step solution: As mentioned in the question, there are two arithmetic progressions with different first terms and different common differences.
For the first A⋅P:-
Let the first term of A⋅P be = a, and the common difference be = d;
So, Sum of ‘n’ terms of an A⋅P is;
${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$
and the nth term of an A⋅P is;
${{a}_{n}}=a+\left( n-1 \right)d$
For the second A⋅P:-
Let the first term of A⋅P. be = A and the common difference be = D;
So, the sum of its ‘n’ terms will be;
${{S}_{n}}=\dfrac{n}{2}\left[ 2A+\left( n-1 \right)D \right]$
And the nth term of an A⋅P is;
${{A}_{n}}=A+\left( n-1 \right)D$
It’s given in the question that the ratio of the sum of ‘n’ terms of the two AP is $5n+4:\ 9n+6;$
$\Rightarrow \dfrac{\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]}{\dfrac{n}{2}\left[ 2\text{A}+\left( n-1 \right)\text{D} \right]}=\dfrac{5n+4}{9n+6}$
$\Rightarrow \dfrac{\left[ 2a+\left( n-1 \right)d \right]}{\left[ 2A+\left( n-1 \right)d \right]}=\dfrac{5n+4}{9n+6}$
Taking L.H.S;
When we take ‘2’ common in numerator and denominator;
\[=\dfrac{2\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{2\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}\]
$=\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}$
So, now;
\[\dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}\] (1)
We need to find the ratio of the 18th term of Arithmetic progression:
\[=\dfrac{18\text{th}\ \text{term}\ \text{of}\ \text{1st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ \text{2nd}\ \text{A}\cdot \text{P}}\]
$\dfrac{{{a}_{18}}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{{{A}_{18}}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}$
$=\dfrac{a+\left( 18-1 \right)d}{A+\left( 18-1 \right)D}$
$=\dfrac{a+17d}{A+17D}$ (2)
Comparing equation (2) with equation (1); $a+17d=a+\left( \dfrac{n-1}{2} \right)d$
$\Rightarrow 17=\dfrac{n-1}{2}$
$\Rightarrow n-1=17\times 2$
$\Rightarrow n-1=34$
$\Rightarrow n=34+1$
$\Rightarrow n=35$
Now, putting $n=35$ in equation (1);
\[\Rightarrow \dfrac{\left[ a+\left( \dfrac{n-1}{2} \right)d \right]}{\left[ A+\left( \dfrac{n-1}{2} \right)D \right]}=\dfrac{5n+4}{9n+6}\]
$\Rightarrow \dfrac{a+\left( \dfrac{35-1}{2} \right)d}{A+\left( \dfrac{35-1}{2} \right)D}=\dfrac{5\left( 35 \right)+4}{9\left( 35 \right)+6}$
$\Rightarrow \dfrac{a+\left( \dfrac{34}{2} \right)d}{A+\left( \dfrac{34}{2} \right)D}=\dfrac{175+4}{315+6}$
$\Rightarrow \dfrac{a+17d}{A+17D}=\dfrac{179}{321}$
Therefore, $\dfrac{18\text{th}\ \text{term}\ \text{of}\ 1\text{st}\ \text{A}\cdot \text{P}}{18\text{th}\ \text{term}\ \text{of}\ 2\text{nd}\ \text{A}\cdot \text{P}}=\dfrac{179}{321}$
Hence, the ratio of ${18}^{\text{th}}$ term of ${1}^{\text{st}}$ A⋅P and ${18}^{\text{th}}$ term of ${2}^{\text{nd}}$ A⋅P is 179: 321.
Note: The sum of the ‘n’ terms of any A⋅P is ${{S}_{n}}=\dfrac{n}{2}\left[ 2a+\left( n-1 \right)d \right]$ and ${n}^{\text{th}}$ term of an A⋅P is ${{a}_{n}}=a+\left( n-1 \right)d$ where ‘a’ is the first term of an A.P and ‘d’ is common difference of an A.P.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

How many valence electrons does nitrogen have class 11 chemistry CBSE
