
The sum of n terms of an A.P is \[an\left( n-1 \right)\]. The sum of squares of these terms is
A. \[{{a}^{2}}{{n}^{2}}\left( n-{{1}^{2}} \right)\]
B. \[\dfrac{{{a}^{2}}}{6}n\left( n-1 \right)\left( 2n-1 \right)\]
C. \[\dfrac{2{{a}^{2}}}{3}n\left( n-1 \right)\left( 2n-1 \right)\]
D. \[\dfrac{2{{a}^{2}}}{3}n\left( n+1 \right)\left( 2n+1 \right)\]
Answer
606.9k+ views
Hint: To solve this type of problem we have to know the formulas like sum of n terms in A.P. We should also know the sum of n natural numbers. By solving using these formulas we will arrive at the final solution. Sum of n natural numbers is \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\].
Complete step-by-step answer:
Given the sum of n terms of an A.P is \[{{S}_{1}}\]=\[an\left( n-1 \right)\].
The sum of n-1 terms of A.P is \[{{S}_{2}}=a\left( n-1 \right)\left( n-1-1 \right)\]
\[{{S}_{2}}=a\left( n-1 \right)\left( n-2 \right)\]
We know that the nth term of an A.P is \[{{S}_{1}}-{{S}_{2}}\].
\[{{S}_{1}}-{{S}_{2}}=an\left( n-1 \right)-a\left( n-1 \right)\left( n-2 \right)\]
\[=a\left( n-1 \right)\left( n-n+2 \right)\]
\[=2a\left( n-1 \right)\].
Putting n=1,2,3,4,5,6, . . . . . . . . . . . . . . .
We get 0, 2a, 4a, 6a, 8a, . . . . . . . . .
The above sequence is in A.P,
Squaring the A.P terms we get,
\[0,4{{a}^{2}},16{{a}^{2}},36{{a}^{2}},64{{a}^{2}}\]. . . . . . . . . .
Now writing the sum for the above sequence we get,
\[0+4{{a}^{2}}+16{{a}^{2}}+36{{a}^{2}}+64{{a}^{2}}................\]
\[{{S}_{n}}=4{{a}^{2}}\left[ 0+1+4+9+16+25+........ \right]\]
Now writing in the form of squares we get,
\[{{S}_{n}}=4{{a}^{2}}\left[ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}}+........ \right]\]
\[{{S}_{n}}=4{{a}^{2}}\left[ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}}+........{{\left( n-1 \right)}^{2}} \right]\] . . . . . . . . . . . . . . . . (a)
We know that Sum of n natural numbers is \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\].
Then sum of (n-1) natural numbers is \[\dfrac{n-1\left( n+1-1 \right)\left( 2n-2+1 \right)}{6}\] . . . . . . . . . (b)
= \[\dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6}\]
Now the sum of the sequence (a) is
\[{{S}_{n}}=\dfrac{4{{a}^{2}}n\left( n-1 \right)\left( 2n-1 \right)}{6}\]
\[{{S}_{n}}=\dfrac{2{{a}^{2}}n\left( n-1 \right)\left( 2n-1 \right)}{3}\]
Therefore the answer is option C.
Note: (b) is the value which we got by substituting the value (n-1) in the sum of n natural numbers to get the sum of (n-1) natural numbers. After finding the sum of (n-1) natural numbers we just wrote the expression for (3).
Complete step-by-step answer:
Given the sum of n terms of an A.P is \[{{S}_{1}}\]=\[an\left( n-1 \right)\].
The sum of n-1 terms of A.P is \[{{S}_{2}}=a\left( n-1 \right)\left( n-1-1 \right)\]
\[{{S}_{2}}=a\left( n-1 \right)\left( n-2 \right)\]
We know that the nth term of an A.P is \[{{S}_{1}}-{{S}_{2}}\].
\[{{S}_{1}}-{{S}_{2}}=an\left( n-1 \right)-a\left( n-1 \right)\left( n-2 \right)\]
\[=a\left( n-1 \right)\left( n-n+2 \right)\]
\[=2a\left( n-1 \right)\].
Putting n=1,2,3,4,5,6, . . . . . . . . . . . . . . .
We get 0, 2a, 4a, 6a, 8a, . . . . . . . . .
The above sequence is in A.P,
Squaring the A.P terms we get,
\[0,4{{a}^{2}},16{{a}^{2}},36{{a}^{2}},64{{a}^{2}}\]. . . . . . . . . .
Now writing the sum for the above sequence we get,
\[0+4{{a}^{2}}+16{{a}^{2}}+36{{a}^{2}}+64{{a}^{2}}................\]
\[{{S}_{n}}=4{{a}^{2}}\left[ 0+1+4+9+16+25+........ \right]\]
Now writing in the form of squares we get,
\[{{S}_{n}}=4{{a}^{2}}\left[ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}}+........ \right]\]
\[{{S}_{n}}=4{{a}^{2}}\left[ {{1}^{2}}+{{2}^{2}}+{{3}^{2}}+{{4}^{2}}+{{5}^{2}}+........{{\left( n-1 \right)}^{2}} \right]\] . . . . . . . . . . . . . . . . (a)
We know that Sum of n natural numbers is \[\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}\].
Then sum of (n-1) natural numbers is \[\dfrac{n-1\left( n+1-1 \right)\left( 2n-2+1 \right)}{6}\] . . . . . . . . . (b)
= \[\dfrac{n\left( n-1 \right)\left( 2n-1 \right)}{6}\]
Now the sum of the sequence (a) is
\[{{S}_{n}}=\dfrac{4{{a}^{2}}n\left( n-1 \right)\left( 2n-1 \right)}{6}\]
\[{{S}_{n}}=\dfrac{2{{a}^{2}}n\left( n-1 \right)\left( 2n-1 \right)}{3}\]
Therefore the answer is option C.
Note: (b) is the value which we got by substituting the value (n-1) in the sum of n natural numbers to get the sum of (n-1) natural numbers. After finding the sum of (n-1) natural numbers we just wrote the expression for (3).
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

