
The sum of first 9 terms of the series $ \dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+... $ \[\]
A.71\[\]
B.96\[\]
C. 142\[\]
D.192\[\]
Answer
557.7k+ views
Hint: We find the general term $ {{t}_{n}} $ of the given series by observing that the general term will have its numerator as sum of first cubed $ n $ numbers that is $ {{1}^{3}}+{{2}^{3}}+...+{{n}^{3}}={{\left( \dfrac{n\left( n+1 \right)}{2} \right)}^{2}} $ and denominator as sum of first $ n $ odd numbers that is $ 1+3+5....+\left( 2n-1 \right)={{n}^{2}} $ . We use a summation operator on $ {{t}_{n}} $ and simplify to get the value of the series up to $ n $ numbers. We put $ n=9 $ to get the required values.
Complete step-by-step answer:
We know that if $ {{t}_{1}},{{t}_{2}},{{t}_{3}},... $ is an infinite sequence then its series can be denoted in summation form as
\[\sum\limits_{n=1}^{\infty }{{{t}_{n}}}={{t}_{1}}+{{t}_{2}}+...\]
Here $ {{t}_{n}} $ is called $ {{n}^{\text{th}}} $ term or general term of the series and $ \Sigma $ is the summation operator. We are given the following series in the question.
\[\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+...\]
We have to first find the general term. We see that the numerator of the general term will be $ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}...+{{n}^{3}} $ that is the sum of first cubed $ n $ numbers whose formula we know as $ \sum\limits_{n=1}^{n}{{{n}^{3}}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $ . The denominator of the general term will be $ 1+3+5+....+\left( 2n-1 \right) $ that is the sum of first $ n $ odd numbers whose formula we know $ \sum\limits_{n=1}^{n}{\left( 2n-1 \right)}={{n}^{2}} $ . So the general term is ;
\[\begin{align}
& {{t}_{n}}=\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...+{{n}^{3}}}{1+3+5+...+\left( 2n-1 \right)} \\
& \Rightarrow {{t}_{n}}=\dfrac{{{\left( \dfrac{n(n+1)}{2} \right)}^{2}}}{{{n}^{2}}} \\
& \Rightarrow {{t}_{n}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4{{n}^{2}}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4} \\
\end{align}\]
We use summation operators on the general term to have the value so the series up to $ {{n}^{\text{th}}} $ term. We have;
\[\begin{align}
& \sum\limits_{n=1}^{n}{{{t}_{n}}}=\sum\limits_{n=1}^{n}{\dfrac{{{\left( n+1 \right)}^{2}}}{4}} \\
& \Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\sum\limits_{n=1}^{n}{{{\left( n+1 \right)}^{2}}} \\
\end{align}\]
We use the algebraic identity of $ {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} $ for $ a=n,b=1 $ in the above step to have;
\[\begin{align}
& \Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\sum\limits_{n=1}^{n}{\left( {{n}^{2}}+2n+1 \right)} \\
& \Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\left( \sum\limits_{n=1}^{n}{{{n}^{2}}+\sum\limits_{n=1}^{n}{2n+\sum\limits_{n=1}^{n}{1}}} \right) \\
& \Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\left( \sum\limits_{n=1}^{n}{{{n}^{2}}+2\sum\limits_{n=1}^{n}{n+\sum\limits_{n=1}^{n}{1}}} \right) \\
\end{align}\]
We know from the sum of first squared $ n $ numbers that $ \sum\limits_{n=1}^{n}{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} $ , the sum of first $ n $ numbers that $ \sum\limits_{n=1}^{n}{n}=\dfrac{n\left( n+1 \right)}{2} $ and if we add 1 $ n $ times we shall get $ \sum\limits_{n=1}^{n}{1}=n $ . So we have;
\[\Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+\dfrac{n\left( n+1 \right)}{2}+n \right)\]
The above obtained expression is the value of series up to $ {{n}^{\text{th}}} $ term. We put $ n=9 $ in the above step to get the sum first 9 terms as;
\[\begin{align}
& \Rightarrow \sum\limits_{n=1}^{9}{{{t}_{n}}}=\dfrac{1}{4}\left( \dfrac{9\left( 9+1 \right)\left( 2\cdot 9+1 \right)}{6}+\dfrac{9\left( 9+1 \right)}{2}+9 \right) \\
& \Rightarrow \sum\limits_{n=1}^{9}{{{t}_{n}}}=\dfrac{1}{4}\left( \dfrac{9\times 10\times 19}{6}+\dfrac{9\times 10}{2}+9 \right) \\
& \Rightarrow \sum\limits_{n=1}^{9}{{{t}_{n}}}=\dfrac{1}{4}\left( 285+90+9 \right)=\dfrac{1}{4}\times 384=96 \\
\end{align}\]
So, the correct answer is “Option B”.
Note: The difference between series and sequence e is that in sequence terms are separated by a comma and in series the terms are separated by addition symbols. We have used distributive law o of summation $ \sum\limits_{n=a}^{b}{C\cdot {{t}_{n}}}=C\cdot \sum\limits_{n=a}^{b}{{{t}_{n}}} $ where $ C $ is constant and associative law $ \sum\limits_{n=a}^{b}{\left( f\left( n \right)+g\left( n \right) \right)}=\sum\limits_{n=a}^{b}{f\left( n \right)}+\sum\limits_{n=a}^{b}{g\left( n \right)} $
Complete step-by-step answer:
We know that if $ {{t}_{1}},{{t}_{2}},{{t}_{3}},... $ is an infinite sequence then its series can be denoted in summation form as
\[\sum\limits_{n=1}^{\infty }{{{t}_{n}}}={{t}_{1}}+{{t}_{2}}+...\]
Here $ {{t}_{n}} $ is called $ {{n}^{\text{th}}} $ term or general term of the series and $ \Sigma $ is the summation operator. We are given the following series in the question.
\[\dfrac{{{1}^{3}}}{1}+\dfrac{{{1}^{3}}+{{2}^{3}}}{1+3}+\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}}{1+3+5}+...\]
We have to first find the general term. We see that the numerator of the general term will be $ {{1}^{3}}+{{2}^{3}}+{{3}^{3}}...+{{n}^{3}} $ that is the sum of first cubed $ n $ numbers whose formula we know as $ \sum\limits_{n=1}^{n}{{{n}^{3}}}={{\left\{ \dfrac{n\left( n+1 \right)}{2} \right\}}^{2}} $ . The denominator of the general term will be $ 1+3+5+....+\left( 2n-1 \right) $ that is the sum of first $ n $ odd numbers whose formula we know $ \sum\limits_{n=1}^{n}{\left( 2n-1 \right)}={{n}^{2}} $ . So the general term is ;
\[\begin{align}
& {{t}_{n}}=\dfrac{{{1}^{3}}+{{2}^{3}}+{{3}^{3}}+...+{{n}^{3}}}{1+3+5+...+\left( 2n-1 \right)} \\
& \Rightarrow {{t}_{n}}=\dfrac{{{\left( \dfrac{n(n+1)}{2} \right)}^{2}}}{{{n}^{2}}} \\
& \Rightarrow {{t}_{n}}=\dfrac{{{n}^{2}}{{\left( n+1 \right)}^{2}}}{4{{n}^{2}}}=\dfrac{{{\left( n+1 \right)}^{2}}}{4} \\
\end{align}\]
We use summation operators on the general term to have the value so the series up to $ {{n}^{\text{th}}} $ term. We have;
\[\begin{align}
& \sum\limits_{n=1}^{n}{{{t}_{n}}}=\sum\limits_{n=1}^{n}{\dfrac{{{\left( n+1 \right)}^{2}}}{4}} \\
& \Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\sum\limits_{n=1}^{n}{{{\left( n+1 \right)}^{2}}} \\
\end{align}\]
We use the algebraic identity of $ {{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}} $ for $ a=n,b=1 $ in the above step to have;
\[\begin{align}
& \Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\sum\limits_{n=1}^{n}{\left( {{n}^{2}}+2n+1 \right)} \\
& \Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\left( \sum\limits_{n=1}^{n}{{{n}^{2}}+\sum\limits_{n=1}^{n}{2n+\sum\limits_{n=1}^{n}{1}}} \right) \\
& \Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\left( \sum\limits_{n=1}^{n}{{{n}^{2}}+2\sum\limits_{n=1}^{n}{n+\sum\limits_{n=1}^{n}{1}}} \right) \\
\end{align}\]
We know from the sum of first squared $ n $ numbers that $ \sum\limits_{n=1}^{n}{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} $ , the sum of first $ n $ numbers that $ \sum\limits_{n=1}^{n}{n}=\dfrac{n\left( n+1 \right)}{2} $ and if we add 1 $ n $ times we shall get $ \sum\limits_{n=1}^{n}{1}=n $ . So we have;
\[\Rightarrow \sum\limits_{n=1}^{n}{{{t}_{n}}}=\dfrac{1}{4}\left( \dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}+\dfrac{n\left( n+1 \right)}{2}+n \right)\]
The above obtained expression is the value of series up to $ {{n}^{\text{th}}} $ term. We put $ n=9 $ in the above step to get the sum first 9 terms as;
\[\begin{align}
& \Rightarrow \sum\limits_{n=1}^{9}{{{t}_{n}}}=\dfrac{1}{4}\left( \dfrac{9\left( 9+1 \right)\left( 2\cdot 9+1 \right)}{6}+\dfrac{9\left( 9+1 \right)}{2}+9 \right) \\
& \Rightarrow \sum\limits_{n=1}^{9}{{{t}_{n}}}=\dfrac{1}{4}\left( \dfrac{9\times 10\times 19}{6}+\dfrac{9\times 10}{2}+9 \right) \\
& \Rightarrow \sum\limits_{n=1}^{9}{{{t}_{n}}}=\dfrac{1}{4}\left( 285+90+9 \right)=\dfrac{1}{4}\times 384=96 \\
\end{align}\]
So, the correct answer is “Option B”.
Note: The difference between series and sequence e is that in sequence terms are separated by a comma and in series the terms are separated by addition symbols. We have used distributive law o of summation $ \sum\limits_{n=a}^{b}{C\cdot {{t}_{n}}}=C\cdot \sum\limits_{n=a}^{b}{{{t}_{n}}} $ where $ C $ is constant and associative law $ \sum\limits_{n=a}^{b}{\left( f\left( n \right)+g\left( n \right) \right)}=\sum\limits_{n=a}^{b}{f\left( n \right)}+\sum\limits_{n=a}^{b}{g\left( n \right)} $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

